
Operationalizing
Generative AI on
Vertex AI using
MLOps
Authors: Anant Nawalgaria,
Gabriela Hernandez Larios, Elia Secchi,
Mike Styer, Christos Aniftos
and Onofrio Petragallo

Operationalizing Generative AI on Vertex AI using ML Ops

2September 2024

Acknowledgements

Reviewers and Contributors

Nenshad Bardoliwalla

Warren Barkley

Mikhail Chrestkha

Chase Lyall

Lakshmanan Sethu

Erwan Menard

Curators and Editors

Antonio Gulli

Anant Nawalgaria

Grace Mollison

Technical Writer

Joey Haymaker

Designer

Michael Lanning

Introduction� 5

	 What are DevOps and MLOps?� 6

	 Lifecycle of a gen AI system� 7

Discover� 9

Develop and experiment� 10

	 The foundational model paradigm� 11

	 The core component of LLM Systems: A prompted model component� 13

	 Chain & Augment� 16

	 Tuning & training� 20

	 Data Practices� 23

	 Evaluate� 27

Deploy� 30

	 Deployment of gen AI systems� 31

		 Version control� 31

		 Continuous integration of gen AI systems� 32

		 Continuous delivery of gen AI systems� 33

	 Deployment of foundation models� 34

		 Infrastructure validation� 34

Table of contents

		 Compression and optimization� 35

		 Deployment, packaging, and serving checklist� 36

	 Logging and monitoring� 37

	 Govern� 41

The role of an AI platform for gen AI operations� 42

	 Key components of Vertex AI for gen AI� 43

	 Discover: Vertex Model Garden� 44

	 Prototype: Vertex AI Studio & Notebooks� 47

	 Customize: Vertex AI training & tuning � 48

		 Train � 49

		 Tune � 49

		 Orchestrate� 51

	 Chain & Augment: Vertex AI Grounding, Extensions, and RAG building blocks� 52

	 Evaluate: Vertex AI Experiments, Tensorboard, & evaluation pipelines� 55

		 Experiment� 56

		 Evaluation� 57

	 Predict: Vertex AI endpoints & monitoring� 57

	 Govern: Vertex AI Feature Store, Model Registry, and Dataplex� 59

Conclusion� 61

Endnotes� 63

Operationalizing Generative AI on Vertex AI using ML Ops

5September 2024

Introduction
The emergence of foundation models and generative AI (gen AI) has introduced a new era
for building AI systems. Selecting the right model from a diverse range of architectures
and sizes, curating data, engineering optimal prompts, tuning models for specific tasks,
grounding model outputs in real-world data, optimizing hardware - these are just a few of the
novel challenges that large models introduce.

This whitepaper delves into the fundamental tenets of MLOps and the necessary adaptations
required for the domain of gen AI and Foundation Models. We also examine the diverse range
of Vertex AI products, specifically tailored to address the unique demands of foundation
models and gen AI-based applications. Through this exploration we uncover how Vertex AI,
with its solid foundations of AI infrastructure and MLOps tools, expands its capabilities to
provide a comprehensive MLOps platform for gen AI.

Emergence of foundation models
and generative AI (gen AI) has
introduced a new era for building
AI systems.

Operationalizing Generative AI on Vertex AI using ML Ops

6September 2024

What are DevOps and MLOps?

DevOps is a software engineering methodology that aims to bridge the gap between
development (Dev) and operations (Ops). It promotes collaboration, automation, and
continuous improvement to streamline the software development lifecycle, introducing
practices such as continuous integration and continuous delivery.

MLOps builds upon DevOps principles to address the unique challenges of operationalizing
Machine Learning systems rapidly and reliably. In particular, MLOps tackles the experimental
nature of ML through practices like:

•	 Data validation: Ensuring the quality and integrity of training data.

•	 Model evaluation: Rigorously assessing model performance with appropriate metrics.

•	 Model monitoring: Tracking model behavior in production to detect and mitigate drift.

•	 Tracking & reproducibility: Maintaining meticulous records for experiment tracking and
result reproduction.

Figure 1. Machine learning workflow

Operationalizing Generative AI on Vertex AI using ML Ops

7September 2024

Lifecycle of a gen AI system

Imagine deploying your first chatbot after months of dedicated work, and it's now interacting
with users and answering questions. Behind this seemingly simple interaction lies the
complex and fascinating life cycle of a gen AI System, which can be broken down into five
key moments.

First in the discovery phase, developers and AI engineers must navigate the expanding
landscape of available models to identify the most suitable one for their specific gen AI
application. They must consider each model's strengths, weaknesses, and costs to make an
informed decision.

Next, development and experimentation become paramount, with prompt engineering
playing a crucial role in crafting and refining input prompts to elicit desired outputs based on
an understanding of the model's intricacies. Few-shot learning, where examples are provided,
can further guide model behavior, while additional customization may involve parameter-
efficient fine-tuning (PEFT). Most gen AI systems also involve model chaining, which refers to
orchestrating calls to multiple models in a specific sequence to create a workflow.

Data engineering practices have a critical role across all development stages, with factual
grounding (ensuring the model's outputs are based on accurate, up-to-date information) and
recent data from internal and enterprise systems being essential for reliable outputs. Tuning
data is often needed to adapt models to specific tasks, styles, or to rectify persistent errors.

Deployment needs to manage many new artifacts in the deployment process, including
prompt templates, chain definitions, embedding models, retrieval data stores, and fine-tuned
model adapters among others. These artifacts each have unique governance requirements,
necessitating careful management throughout development and deployment. Gen AI system
deployment also needs to account for the technical capabilities of the target infrastructure,
ensuring that system hardware requirements are fulfilled.

Operationalizing Generative AI on Vertex AI using ML Ops

8September 2024

Continuous monitoring in production ensures improved application performance and
maintains safety standards through responsible AI techniques, such as ensuring fairness,
transparency, and accountability in the model's outputs.

Continuous Improvement as a concept is still key for Gen AI-based applications, though
with a twist. For most Gen AI applications, instead of training models from scratch, we’re
taking foundation models (FMs) and then adapting them to our specific use case. This means
constantly tweaking these FMs through prompting techniques, swapping them out for newer
versions, or even combining multiple models for enhanced performance, cost efficiency, or
reduced latency. Traditional continuous training still holds relevance for scenarios when
recurrent fine-tuning or incorporating human feedback loops are still needed.

Naturally, this lifecycle assumes that the foundational model powering the gen AI system is
already operationalized. It's important to recognize that not all organizations will be directly
involved in this part of the process. In particular, the operationalization of foundational
models is a specialized set of tasks that is typically only relevant for a select few companies
with the necessary resources and expertise.

Because of that, this whitepaper will focus on practices required to operationalize gen AI
applications using and adapting existing foundation models, referring to other whitepapers in
the book should you want to deepdive into how foundational models are operationalized.

This includes active areas of research such as model pre-training, alignment (ensuring the
model's outputs align with the desired goals and values), evaluation or serving.

Operationalizing Generative AI on Vertex AI using ML Ops

9September 2024

Figure 2. Lifecycle of a Foundational Model & gen AI system and relative operationalization practices

Discover
As mentioned before, building foundational models from scratch is resource-intensive.
Training costs and data requirements are substantial, pushing most practitioners towards
adapting existing foundation models through techniques like fine-tuning and prompt
engineering. This shift highlights a crucial need: efficiently discovering the optimal foundation
model for a given use case.

These two characteristics of the gen AI landscape make model discovery an essential
MLOps practice:

1.	 An abundance of models: The past year has witnessed an explosion of open-source
and proprietary foundation models. Navigating this complex landscape, each with varying
architectures, sizes, training datasets, and licenses, requires a systematic approach to
identify suitable candidates for further evaluation.

Operationalizing Generative AI on Vertex AI using ML Ops

10September 2024

2.	 No one-size-fits-all solution: Each use case presents unique requirements, demanding a
nuanced analysis of available models across multiple dimensions.

Here are some factors to consider when exploring models:

1.	 Quality: Early assessments can involve running test prompts or analyzing public
benchmarks and metrics to gauge output quality.

2.	 Latency & throughput: These factors directly impact user experience. A chatbot
demands lower latency than batch-processed summarization tasks.

3.	 Development & maintenance time: Consider the time investment for both initial
development and ongoing maintenance. Managed models often require less effort than
self-deployed open-source alternatives.

4.	 Usage cost: Factor in infrastructure and consumption costs associated with using the
chosen model.

5.	 Compliance: Assess the model's ability to adhere to relevant regulations and
licensing terms.

Because the activity of discovery has become so important for gen AI systems, many model
discoverability platforms were created to support this need. An example of that is Vertex
Model Garden,1 which is explored later in this whitepaper.

Develop and experiment
The process of development and experimentation remains iterative and orchestrated
while building gen AI applications. Each experimental iteration involves a tripartite
interplay between data refinement, foundation model(s) selection and adaptation, and

Operationalizing Generative AI on Vertex AI using ML Ops

11September 2024

rigorous evaluation. Evaluation provides crucial feedback, guiding subsequent iterations
in a continuous feedback loop. Subpar performance might call for gathering more data,
augmenting data, or further curating the data. Similarly, the adaptation of the foundation
model itself might need tweaking - optimizing prompts, applying fine-tuning techniques, or
even swapping it out for a different one altogether. This iterative refinement cycle, driven by
evaluation insights, is just as critical for optimizing gen AI applications as it’s always been for
traditional machine learning.

The foundational model paradigm

Foundation models differ from predictive models most importantly because they are multi-
purpose models. Instead of being trained for a single purpose, on data specific to that
task, foundation models are trained on broad datasets, and therefore can be applied to
many different use cases. This distinction brings with it several more important differences
between foundation models and predictive models.

Foundation models also exhibit what are known as ‘emergent properties’,2 capabilities that
emerge in response to specific input without additional training. Predictive models are
only able to perform the single function they were trained for; a traditional French-English
translation model, for instance, cannot also solve math problems.

Foundation models are also highly sensitive to changes in their input. The output of the
model and the task it performs are strongly affected, indeed determined, by the input to the
model. A foundation model can be made to perform translation, generation, or classification
tasks simply by changing the input. Even insignificant changes to the input can affect its
ability to correctly perform that task.

Operationalizing Generative AI on Vertex AI using ML Ops

12September 2024

These new properties of foundation models have created a corresponding paradigm shift
in the practices required to develop and operationalize Gen AI systems. While models in
the predictive AI context are self-sufficient and task-specific, gen AI models are multi-
purpose and need an additional element beyond the user input to function as part of a
gen AI Application: a prompt, and more specifically, a prompt template, defined as a set of
instructions and examples along with placeholders to accommodate user input. A prompt
template, along with dynamic data such as user input, can be combined to create a complete
prompt, the text that is passed as input to the foundation model.

Figure 3. How Prompt Template and User input can be combined to create a prompt

Operationalizing Generative AI on Vertex AI using ML Ops

13September 2024

The core component of LLM Systems: A prompted
model component

The presence of the prompt element is a distinguishing feature of gen AI applications.
Neither the model nor the prompt is sufficient for the generation of content; gen AI needs the
combination of both. We refer to the combination as a ‘prompted model component’. This
is the smallest independent component sufficient to create an LLM application. The prompt
does not need to be very complicated. It can be a simple instruction, such as “translate
the following sentence from English to French“, followed by the sentence to be translated.
Without that preliminary instruction, though, a foundation model would not perform the
desired translation task. So a prompt, even just a basic instruction, is necessary along with
the input to get the foundation model to do the task required by the application.

Figure 4. Predictive AI unit compared with the gen AI unit

This introduces an important distinction when it comes to MLOps practices for gen AI. In
the development of a gen AI System, experimentation and iteration need to be done in the
context of a prompted model component, the combination of a model and a prompt. The Gen

Operationalizing Generative AI on Vertex AI using ML Ops

14September 2024

AI experimentation cycle typically begins with testing variations of the prompt – changing the
wording of the instructions, providing additional context, or including relevant examples, etc.,
and evaluating the impact of those changes. This practice is commonly referred to as prompt
engineering.

Prompt engineering involves two iterative steps:

1.	 Prompting: Crafting and refining prompts to elicit desired behaviors from a foundational
model for a specific use case.

2.	 Evaluation: Assessing the model's outputs, ideally programmatically, to gauge its
understanding and success in fulfilling the prompt's instructions.

Figure 5. The activity of prompt engineering

Results of an evaluation can be optionally registered as part of an experiment, to allow for
result tracking. Since the prompt itself is a core element of the prompt engineering process,
it becomes a first class citizen within the artifacts part of the experiment.

However, we need to identify which type of artifacts they are. In the good old days of
Predictive AI, we had clear lines - data was one thing, pipelines and code another. But with
the “Prompt” paradigm in gen AI, those lines get blurry. Think about it: prompts can include
anything from context, instructions, examples, guardrails to actual internal or external data
pulled from somewhere else. So, are prompts data? Are they code?

Operationalizing Generative AI on Vertex AI using ML Ops

15September 2024

To address these questions, a hybrid approach is needed, recognizing that a prompt has
different components and requires different management strategies. Let’s break it down:

Prompt as Data: Some parts of the prompt will act just like data. Elements like few-shot
examples, knowledge bases, and user queries are essentially data points. For these
components, we need data-centric MLOps practices such as data validation, drift detection,
and lifecycle management.

Prompt as Code: Other components such as context, prompt templates, guardrails are mode
code-like. They define the structure and rules of the prompt itself. Here, we need code-
centric practices such as approval processes, code versioning, and testing.

As a result, when applying MLOps practices to gen AI, it becomes important to have in place
processes that give developers easy storage, retrieval, tracking, and modification of prompts.
This allows for fast iteration and principled experimentation. Often one version of a prompt
will work well with a specific version of the model and less well with a different version. In
tracking the results of an experiment, both the prompt and its components version, and the
model version must be recorded and stored along with metrics and output data produced by
the prompted model.

The fact that development and experimentation in gen AI requires working with the prompt
and the model together introduces changes in some of the common MLOps practices,
compared to the predictive AI case in which experimentation is done by changing the model
alone. Specifically, several of the MLOps practices need to be expanded to consider the
prompted model component together as a unit. This includes practices like evaluation,
experiment tracking, model adaptation and deployment, and artifact management,
which will be discussed below in this whitepaper.

Operationalizing Generative AI on Vertex AI using ML Ops

16September 2024

Chain & Augment

Gen AI models, particularly large language models (LLMs), face inherent challenges in
maintaining recency and avoiding hallucinations. Encoding new information into LLMs
requires expensive and data-intensive pre-training, posing a significant hurdle. Additionally,
LLMs might be unable to solve complex challenges, especially when step-by-step reasoning
is required. Depending on the use case, leveraging only one prompted model to perform
a particular generation might not be sufficient. To solve this issue, leveraging a divide and
conquer approach, several prompted models can be connected together, along with calls
to external APIs and logic expressed as code. A sequence of prompted model components
connected together in this way is commonly known as a chain.

Figure 6. Components of a chain and relative development process

Operationalizing Generative AI on Vertex AI using ML Ops

17September 2024

Two common chain-based patterns that have emerged to mitigate recency and
hallucinations are retrieval augmented generation (RAG)3 and Agents.

•	 RAG addresses these challenges by augmenting pre-trained models with
“knowledge” retrieved from databases, bypassing the need for pre-training. This
enables grounding and reduces hallucinations by incorporating up-to-date factual
information directly into the generation process.

•	 Agents, popularized by the ReAct prompting technique,4 leverage LLMs as mediators
interacting with various tools, including RAG systems, internal or external APIs,
custom extensions, or even with other agents. This enables complex queries and
real-time actions by dynamically selecting and utilizing relevant information sources.
The LLM, acting as an agent, interprets the user’s query, decides which tool to utilize,
and how to formulate the response based on the retrieved information.

RAG and Agents approaches can be combined to create multi-agent systems connected
to large information networks, enabling sophisticated query handling and real-time
decision-making.

The orchestration of different models, logic and APIs is not a novelty of gen AI
Applications. For example, recommendation engines have long combined collaborative
filtering models, content-based models, and business rules to generate personalized
product recommendations for users. Similarly, in fraud detection, machine learning
models are integrated with rule-based systems and external data sources to identify
suspicious activities.

Operationalizing Generative AI on Vertex AI using ML Ops

18September 2024

What makes these chains of gen AI components different, is that, we can't a priori
characterize or cover the distribution of component inputs, which makes the individual
components much harder to evaluate and maintain in isolation.

This results in a paradigm shift in how AI applications are being developed for gen AI.

Unlike Predictive AI where it is often possible to iterate on the separate models and
components in isolation to then chain in the AI application, in gen AI it’s often easier to
develop a chain in integration, performing experimentation on the chain end-to-end, iterating
over chaining strategies, prompts, the underlying foundational models and other APIs in
a coordinated manner to achieve a specific goal. No feature engineering, data collection,
or further model training cycles is often needed; just changes to the wording of the
prompt template.

The shift towards MLOps for gen AI, in contrast to predictive AI, brings forth a new set of
demands. Let's break down these key differences:

1.	 Evaluation: Because of their tight coupling, chains need end-to-end evaluation, not just
on a per-component basis, to gauge their overall performance and the quality of their
output. In terms of evaluation techniques and metrics, evaluating chains is not dissimilar
to evaluating prompted models. Please refer to the below segment on evaluation for more
details on these approaches.

2.	 Versioning: A chain needs to be managed as a complete artifact in its entirety. The chain
configuration should be tracked with its own revision history for analysis, reproducibility,
and understanding the impact of changes on output. Logging should also include the
inputs, outputs, and intermediate states of the chain, and any chain configurations used
during each execution.

Operationalizing Generative AI on Vertex AI using ML Ops

19September 2024

3.	 Continuous Monitoring: Establishing proactive monitoring systems is vital for detecting
performance degradation, data drift, or unexpected behavior in the chain. This ensures
early identification of potential issues to maintain the quality of the generated output. The
activity of monitoring Chains is discussed in detail in the section ‘Logging and Monitoring’.

4.	 Introspection: The ability to inspect the internal data flows of a chain (inputs and outputs
from each component) as well as the inputs and outputs of the entire chain is paramount.
By providing visibility into the data flowing through the chain and the resulting content,
developers can pinpoint the sources of errors, biases, or undesirable behavior.

Figure 7. Putting together chains, prompted models and model tuning

There are several products in Vertex AI that can support the need for chaining and
augmentation, including Grounding as a service,5 Extensions,6 and Vector Search,7 Agent
Builder.8 We discuss the products in the section “Role of a AI Platform”. Langchain9 is also
integrated with the Vertex SDK,10 and can be used alongside the core Vertex products to
define and configure gen AI chained applications.

Operationalizing Generative AI on Vertex AI using ML Ops

20September 2024

Tuning & training

When developing a gen AI use case and a specific task that involves LLMs, it can be difficult,
especially for complex tasks, to rely on only prompt engineering and chaining to solve it.
To improve task performance practitioners often also need to fine-tune the model directly.
Fine-tuning lets you actively change the layers or a subset of layers of the LLM to optimize
the capability of the model to perform a certain task. Two of the most common ways of
tuning a model are:

1.	 Supervised fine-tuning: This is where we train the model in a supervised manner, teaching
it to predict the right output sequence for a given input.

2.	 Reinforcement Learning from Human Feedback (RLHF): In this approach, we first train
a reward model to predict what humans would prefer as a response. Then, we use this
reward model to nudge the LLM in the right direction during the tuning process. Like
having a panel of human judges guiding the model's learning.

Figure 8. Putting together chains, prompted models and model tuning

Operationalizing Generative AI on Vertex AI using ML Ops

21September 2024

When viewed through the MLOps lens, fine-tuning shares similar requirements with
model training:

1.	 The capability to track artifacts being part of the tuning job. This includes for example the
input data or the parameters being used to tune the model.

2.	 The capability to measure the impact of the tuning. This translates into the capability
to perform evaluation of the tuned model for the specific tasks it was trained on and to
compare results with previously tuned models or frozen models for the same task.

Platforms like Vertex AI11 (and the Google Cloud platform more broadly) provide a robust
suite of services designed to address these MLOps requirements: Vertex Model Registry,12
for instance, provides a centralized storage location for all the artifacts created during the
tuning job, and Vertex Pipelines13 streamlines the development and management of these
tuning jobs. Dataplex,14 meanwhile, provides an organization-wide data fabric for data lineage
and governance and integrates well with both Vertex AI and BigQuery.15 What’s more, these
products provide the same governance capability for both predictive and gen AI applications,
meaning customers do not need separate products or configurations to manage generative
versus AI development.

Continuous Training & Tuning

In machine learning operations (MLOps), continuous training is the practice of repeatedly
retraining machine learning models in a production environment. This is done to ensure
that the model remains up-to-date and performs well as real-world data patterns change
over time. For gen AI models, continuous tuning of the models is often more practical than
retraining from scratch due to the high data and computational costs involved.

Operationalizing Generative AI on Vertex AI using ML Ops

22September 2024

The approach to continuous tuning depends on the specific use case and goals. For relatively
static tasks like text summarization, the continuous tuning requirements may be lower. But
for dynamic applications like chatbots that need constant human alignment, more frequent
tuning using techniques like RLHF based on human feedback is necessary.

To determine the right continuous tuning strategy, AI practitioners must carefully evaluate
the nature of their use case and how the input data evolves over time. Cost is also a major
consideration, as the compute infrastructure greatly impacts the speed and expense of
tuning. We discuss in detail monitoring of GenAI systems in the Logging and Monitoring
section of this whitepaper.

Graphics processing units (GPUs) and tensor processing units (TPUs) are key hardware for
fine-tuning. GPUs, known for their parallel processing power, are highly effective in handling
the computationally intensive workloads and often associated with training and running
complex machine learning models. TPUs, on the other hand, are specifically designed
by Google for accelerating machine learning tasks. TPUs excel in handling large matrix
operations common in deep learning neural networks.

To manage costs, techniques like model quantization can be applied. This represents model
weights and activations using lower-precision 8-bit integers rather than 32-bit floats, which
reduces computational and memory requirements.

We discuss in detail the support for tuning in Vertex AI in the Customize: Vertex AI Training &
Tuning section.

Operationalizing Generative AI on Vertex AI using ML Ops

23September 2024

Data Practices

Traditionally, ML model behavior was dictated solely by its training data. While this still holds
true for foundation models – trained on massive, multilingual, multimodal datasets – gen AI
applications built on top of them introduce a new twist: model behavior is now determined by
how you adapt the model using different types of input data (Figure. 9).

Figure 9. Examples of data spectrum for foundation models – creation (left) vs. adaptation (right)

The key difference between traditional predictive ML and gen AI lies in where you start. In
predictive ML, the data is paramount. You spend a lot of time on data engineering, and if you
don’t have the right data, you cannot build an application. Gen AI takes a unique approach to
this matter. You start with a foundation model, some instructions and maybe a few example
inputs (in-context learning). You can prototype and launch an application with surprisingly
little data.

Operationalizing Generative AI on Vertex AI using ML Ops

24September 2024

This ease of prototyping, however, comes with a challenge. Traditional predictive AI relies on
apriori well-defined dataset(s). In gen AI, a single application can leverage various data types,
from completely different data sources, all working together (Figure 10). Let’s explore some
of these data types:

•	 Conditioning prompts: These are essentially instructions given to the Foundation Model
(FM) to guide its output, setting boundaries of what it can generate.

•	 Few-shot examples: A way to show the model what you want to achieve through input-
output pairs. This helps the model grasp the specific task(s) at hand, and in many cases, it
boosts performances.

•	 Grounding/augmentation data: Data coming from either external APIs (like Google
Search) or internal APIs and data sources. This data permits the FM to produce answers
for a specific context, keeping responses current, relevant without retraining the entire
FM. This type of data also supports reducing hallucinations.

•	 Task-specific datasets: These are used to fine-tune an existing FM for a particular task,
improving its performance in that specific area.

•	 Human preference datasets: These capture feedback on generated outputs, helping
refine the model’s ability to produce outputs that align with human preferences.

•	 Full pre training corpora: These are massive datasets used to initially train foundation
models. While application builders may not have access to them nor the tokenizers,
the information encoded in the model itself will influence the application’s output
and performance.

This is not an exhaustive list. The variety of data used in gen AI applications is constantly
growing and evolving.

Operationalizing Generative AI on Vertex AI using ML Ops

25September 2024

Figure 10. Example of high-level data and adaptations landscape for developing gen AI applications using
existing foundation models

This diverse range of data adds another complexity layer in terms of data organization,
tracking and lifecycle management. Take a RAG-based application as an example: it might
involve rewriting user queries, dynamically gathering relevant examples using a curated set
of examples, querying a vector database, and combining it all with a prompt template. This
involves managing multiple data types: user queries, vector databases with curated few-shot
examples and company information, and prompt templates.

Operationalizing Generative AI on Vertex AI using ML Ops

26September 2024

Each data type needs careful organization and maintenance. For example, the vector
database requires processing data into embeddings, optimizing chunking strategies, and
ensuring only relevant information is available. The prompt template itself needs versioning
and tracking, the user queries need rewriting, etc. This is where traditional MLOps and
DevOps best practices come into play, with a twist. We need to ensure reproducibility,
adaptability, governance, and continuous improvement using all the data required in an
application as a whole but also individually. Think of it this way: in predictive AI, the focus
was on well-defined data pipelines for extraction, transformation, and loading. In gen AI,
it's about building pipelines to manage, evolve, adapt and integrate different data types in a
versionable, trackable, and reproducible way.

As mentioned earlier, fine-tuning foundation models (FMs) can boost gen AI app
performance, but it needs data. You can get this data by launching your app and gathering
real-world data, generating synthetic data, or a mix of both. Using large models to generate
synthetic data is becoming popular because it speeds things up, but it's still good to have a
human check the results for quality assurance. Here are few ways to leverage large models
for data engineering purposes:

1.	 Synthetic data generation: This process involves creating artificial data that closely
resembles real-world data in terms of its characteristics and statistical properties, often
being done with a large and capable model. This synthetic data serves as additional
training data for gen AI, enabling it to learn patterns and relationships even when labeled
real-world data is scarce.

2.	 Synthetic data correction: This technique focuses on identifying and correcting errors
and inconsistencies within existing labeled datasets. By leveraging the power of larger
models, gen AI can flag potential labeling mistakes and propose corrections, improving the
quality and reliability of the training data.

Operationalizing Generative AI on Vertex AI using ML Ops

27September 2024

3.	 Synthetic data augmentation: This approach goes beyond simply generating new
data. It involves intelligently manipulating existing data to create diverse variations while
preserving essential features and relationships. Thus, gen AI can encounter a broader
range of scenarios during training, leading to improved generalization and ability to
generate nuanced and relevant outputs.

Evaluating gen AI, unlike predictive AI, is tricky. You don't usually know the training data
distribution of the foundational models. Building a custom evaluation dataset reflecting your
use case is essential. This dataset should cover essential, average, and edge cases. Similar
to fine-tuning data, you can leverage powerful language models to generate, curate, and
augment data for building robust evaluation datasets.

Evaluate

Even if only prompt engineering is performed, as any experimental process, it does require
evaluation in order to iterate and improve. This makes the evaluation process a core activity
of the development of any gen AI systems.

In the context of gen AI systems, evaluation might have different degrees of automation: from
entirely driven by humans to entirely automated by a process.

In the early days of a project, when you're still prototyping, evaluation is often a manual
process. Developers eyeball the model's outputs, getting a qualitative sense of how it's
performing. But as the project matures and the number of test cases balloons, manual
evaluation becomes a bottleneck. That's when automation becomes key.

Operationalizing Generative AI on Vertex AI using ML Ops

28September 2024

Automating evaluation has two big benefits. First, it lets you move faster. Instead of spending
time manually checking each test case, you can let the machines do the heavy lifting.
This means more iterations, more experiments, and ultimately, a better product. Second,
automation makes evaluation more reliable. It takes human subjectivity out of the equation,
ensuring that results are reproducible.

But automating evaluation for gen AI comes with its own set of challenges.

For one, both the inputs (prompts) and outputs can be incredibly complex. A single prompt
might include multiple instructions and constraints that the model needs to juggle. And the
outputs themselves are often high-dimensional - think a generated image or a block of text.
Capturing the quality of these outputs in a simple metric is tough.

There are some established metrics, like BLEU for translations and ROUGE for summaries,
but they don't always tell the full story. That's where custom evaluation methods come in.
One approach is to use another foundational model as a judge. For example, you could
prompt a large language model to score the quality of generated texts across various
dimensions. This is the idea behind techniques like AutoSxS.16

Another challenge is the subjective nature of many evaluation metrics for gen AI. What
makes one output ‘better’ than another can often be a matter of opinion. The key here is to
make sure your automated evaluation aligns with human judgment. You want your metrics
to be a reliable proxy for what people would think. And to ensure comparability between
experiments, it's crucial to lock down your evaluation approach and metrics early in the
development process.

Lack of ground truth data is another common hurdle, especially in the early stages of a
project. One workaround is to generate synthetic data to serve as a temporary ground truth,
which can be refined over time with human feedback.

Operationalizing Generative AI on Vertex AI using ML Ops

29September 2024

Finally, comprehensive evaluation is essential for safeguarding gen AI applications against
adversarial attacks. Malicious actors can craft prompts to try to extract sensitive information
or manipulate the model's outputs. Evaluation sets need to specifically address these attack
vectors, through techniques like prompt fuzzing (feeding the model random variations on
prompts) and testing for information leakage.

Automating the evaluation process ensures speed, scalability and reproducibility

An automation of the evaluation process can be considered a proxy for the
human judgmen

Depending on the use case, the evaluation process will require a high degree
of customization.

To ensure comparability it is essential to stabilize the evaluation approach, metrics,
and ground truth data as early as possible in the development phase.

It is possible to generate synthetic ground truth data to accommodate for the lack of
real ground truth data.

It is important to include test cases of adversarial prompting as part of the evaluation
set to test the reliability of the system itself for these attacks.

Table 1. Key suggestions to approach evaluation of gen AI systems

Operationalizing Generative AI on Vertex AI using ML Ops

30September 2024

Deploy
It should be clear by this point that production gen AI applications are complex systems with
many interacting components. Some of the common components discussed include multiple
prompts, models, adapter layers and external data sources. In deploying a gen AI system to
production, all these components need to be managed and coordinated with the previous
stages of gen AI system development. Given the novelty of these systems, best practices
for deployment and management are still evolving, but we can discuss observations and
recommendations for these components and indicate how to address the major concerns.

Deploying gen AI solutions necessarily involves multiple steps. For example, a single
application might utilize several large language models (LLMs) alongside a database, all
fed by a dynamic data pipeline. Each of these components potentially requires its own
deployment process.

For clarity, we distinguish between two main types of deployment:

1.	 Deployment of gen AI systems: This focuses on operationalizing a complete system
tailored for a specific use case. It encompasses deploying all the necessary elements
- the application, chosen LLMs, database, data pipelines, and any other relevant
components - to create a functioning end-user solution.

2.	 Deployment of foundational models: This applies to open-weight models, where the
model weights are publicly available on platforms like Vertex Model Garden or Hugging
Face, or privately trained models. Deployment in this scenario centers around making
the foundational model itself accessible to users. Given their multipurpose nature, these
deployments often aim to support various potential use cases.

Operationalizing Generative AI on Vertex AI using ML Ops

31September 2024

Deployment of gen AI systems

Deployment of gen AI systems is broadly similar to deployment of any other complex
software system. Most of the system components – databases, Python applications, etc. –
are also found in other non-gen AI applications. As a result, our general recommendation is
to manage these components using standard software engineering practices such as version
control17 and Continuous Integration / Continuous Delivery (CI/CD).18

Version control

Gen AI experimentation is an iterative process involving repeated cycles of development,
evaluation, and modification. To ensure a structured and manageable approach, it's crucial to
implement strict versioning for all modifiable components. These components include:

•	 Prompt templates: Unless leveraging specific prompt management solutions, version
them through standard version control tools like Git.

•	 Chain definitions: The code defining the chain (including API integrations, database calls,
functions, etc.) should also be versioned using tools like Git. This provides a clear history
and enables easy rollback if needed.

•	 External datasets: In retrieval augmented generation (RAG) systems, external datasets
play a key role. It’s important to track these changes and versions of these datasets for
reproducibility. You can do that by leveraging existing data analytics solutions such as
BigQuery, AlloyDB, Vertex Feature Store.

•	 Adapter models: The landscape of techniques like LoRA tuning for adapter models is
constantly evolving. . You can leverage established data storage solutions (e.g. cloud
storage) to manage and version these assets effectively.

Operationalizing Generative AI on Vertex AI using ML Ops

32September 2024

Continuous integration of gen AI systems

In a continuous integration framework, every code change goes through automatic testing
before merging to catch issues early. Here, unit and integration testing are key for quality
and reliability. Unit tests act like a microscope, zooming in on individual code pieces, while
integration testing verifies that different components work together.

The benefits of continuous integration in traditional software development are well-
understood. Implementing a CI system helps to do the following:

1.	 Ensure reliable, high-quality outputs: Rigorous testing increases confidence in the
system's performance and consistency.

2.	 Catch bugs early: Identifying issues through testing prevents them from causing bigger
problems downstream. It also makes the system more robust and resilient to edge cases
and unexpected inputs.

3.	 Lower maintenance costs: Well-documented test cases simplify troubleshooting and
enable smoother modifications in the future, reducing overall maintenance efforts

These benefits are applicable to gen AI Systems as much as any software product.
Continuous Integration should be applied to all elements of the system, including the prompt
templates, the chain and chaining logic, and any embedding models and retrieval systems.

However, applying CI to gen AI comes with challenges:

1.	 Difficult to generate comprehensive test cases: The complex and open-ended nature of
gen AI outputs makes it hard to define and create an exhaustive set of test cases that
cover all possibilities.

Operationalizing Generative AI on Vertex AI using ML Ops

33September 2024

2.	 Reproducibility issues: Achieving deterministic, reproducible results is tricky since
generative models often have intrinsic randomness and variability in their outputs, even for
identical inputs. This makes it harder to consistently test for specific expected behaviors.

These challenges are closely related to the broader question of how to evaluate gen AI
systems. Many of the same techniques discussed in the Evaluation section above can also
be applied to the development of CI systems for gen AI. This is an ongoing area of research,
however, and more techniques will undoubtedly emerge in the near future.

Continuous delivery of gen AI systems

Once the code is merged, a continuous delivery process begins to move the built and tested
code through environments that closely resemble production for further testing before the
final deployment.

As mentioned in the "'"Develop and Experiment"'" segment, chain elements become one
of the main components to deploy, as they fundamentally constitute the gen AI application
serving users.

The delivery process of the gen AI application containing the chain may vary depending on
the latency requirements and whether the use case is batch or online:

1.	 Batch use cases require deploying a batch process executed on a schedule in production.
The delivery process should focus on testing the entire pipeline in integration in an
environment close to production before deployment. As part of the testing process,
developers can assert specific requirements around the throughput of the batch process
itself and checking that all components of the application are functioning correctly (e.g.,
permissioning, infrastructure, code dependencies).

Operationalizing Generative AI on Vertex AI using ML Ops

34September 2024

2.	 Online use cases require deploying an API, in this case, the application containing the
chain, capable of responding to users at low latency. The delivery process should involve
testing the API in integration in an environment close to production, with tests to assert
that all components of the application are functioning correctly (e.g., permissioning,
infrastructure, code dependencies). Non-functional requirements (e.g., scalability,
reliability, performance) can be verified through a series of tests, including load tests.

Deployment of foundation models

Because foundation models are so large and complex, deployment and serving of these
models raises a number of issues – most obviously, the compute and storage resources
needed to run these massive models successfully. At a minimum, a foundation model
deployment needs to include several key considerations: selecting and securing necessary
compute resources, such as GPUs or TPUS; choosing appropriate data storage services
like BigQuery or Google Cloud Storage that can scale to deal with the large datasets; and
implementing model optimization or compression techniques.

Infrastructure validation

One technique that can be applied to address the resource requirements of gen AI systems is
infrastructure validation. This refers to the introduction of an additional verification step, prior
to deploying the training and serving systems, to check both the compatibility of the model
with the defined serving configuration and the availability of the required hardware. There
are a number of optional infrastructure validation layers that can perform some of these
checks automatically. For instance, TFX19 has an infrastructure validation layer that checks

Operationalizing Generative AI on Vertex AI using ML Ops

35September 2024

whether the model will run correctly on a specified hardware configuration, which can help
catch configuration issues before deployment. Nevertheless, the availability of the required
hardware still needs to be verified by hand by the engineer or the system administrator.

Compression and optimization

Another way of addressing infrastructure challenges is to optimize the model itself.
Compressing and/or optimizing the model can often significantly reduce the storage and
compute resources needed for training and serving, and in many cases can also decrease
the serving latency.

Some techniques for model compression and optimization include quantization, distillation
and model pruning. Quantization reduces the size and computational requirements of the
model by converting its weights and activations from higher-precision floating-point numbers
to lower-precision representations, such as 8-bit integers or 16-bit floating-point numbers.
This can significantly reduce the memory footprint and computational overhead of the model.
Model Pruning is a technique for eliminating unnecessary weight parameters or by selecting
only important subnetworks within the model. This reduces model size while maintaining
accuracy as high as possible. Finally, distillation trains a smaller model, using the responses
generated by a larger LLM, to reproduce the output of the larger LLM for a specific domain.
This can significantly reduce the amount of training data, compute, and storage resources
needed for the application.

In certain situations, model distillation can also improve the performance of the model itself
in addition to reducing resource requirements. This happens because the smaller model can
combine the knowledge of the larger model with labeled data, which can help it to generalize
better to new data on a limited use case.The process of distillation usually involves training
a large foundational LLM (teacher model) and having it generate responses to certain tasks,

Operationalizing Generative AI on Vertex AI using ML Ops

36September 2024

and then having the smaller LLM (student model) use a combination of the LLMs knowledge
as well as task specific supervised dataset to learn. The size and complexity of the smaller
LLM can be adjusted to achieve the desired trade-off between performance and resource
requirements. A technique known as step-by-step distillation20 has proven to achieve
great results.

Deployment, packaging, and serving checklist

Following are the important steps to take when deploying a model on Vertex AI.

	□ Configure version control: Implement version control practices for LLM deployments.
This allows you to roll back to previous versions if necessary and track changes made to
the model or deployment configuration.

	□ Optimize the model: Perform any model optimization (distillation, quantization, pruning,
etc.) before packaging or deploying the model.

	□ Containerize the model: Package the trained LLM model into a container.

	□ Define target hardware requirements: Ensure the target deployment environment
meets the requirements for optimal performance of the LLM model, such as GPUs, as well
as TPUs and other specialized hardware accelerators.

	□ Define model endpoint: Define the endpoint configuration using Vertex AI's endpoint
creation interface or the Vertex AI SDK. Specify the model container, input and output
formats, and any additional configuration parameters.

	□ Allocate resources: Allocate the appropriate compute resources for the endpoint based
on the expected traffic and performance requirements.

Operationalizing Generative AI on Vertex AI using ML Ops

37September 2024

	□ Configure access control: Set up access control mechanisms to restrict access to
the endpoint based on authentication and authorization policies. This ensures that only
authorized users or services can interact with the deployed LLM.

	□ Create model endpoint: Create a Vertex AI endpoint to deploy21 the LLM as a REST API
service. This allows clients to send requests to the endpoint and receive responses from
the LLM..

	□ Configure monitoring and logging: Establish monitoring and logging systems to track
the endpoint's performance, resource utilization, and error logs.

	□ Deploy custom integrations: Integrate the LLM into custom applications or services
using the model's SDK or APIs. This provides more flexibility for integrating the LLM into
specific workflows or frameworks.

	□ Deploy Real-time Applications: For real-time applications, consider using Cloud
Functions and Cloud Run in combination with LLMs hosted in Vertex AI to create a
streaming pipeline that processes data and generates responses in real time.

Logging and monitoring

Monitoring gen AI applications and, as a result, their components, presents unique
challenges that require additional techniques and approaches on top of those in traditional
MLOps. The use of gen AI requires the chaining of components in order to produce results
for practical applications. Additionally, to your application user, all the components are
hidden. Therefore, the interface they have to your application is their input and the final
output. This creates the need to log and monitor your application end-to-end: that is, logging
and monitoring the input and output of your application overall as well as the input and
output of every single component.

Operationalizing Generative AI on Vertex AI using ML Ops

38September 2024

Logging is necessary for applying monitoring and debugging on your gen AI system in
production. An input to the application triggers multiple components. Imagine the output
to a given input is factually inaccurate. How can you find out which of the components are
the ones that didn’t perform well? To answer this question it is necessary to apply logging
on the application level and at the component level. We need lineage in our logging for all
components executed. For every component we need to log their inputs and outputs. We
also need to be able to map those with any additional artifacts and parameters they depend
on so we can easily analyze those inputs and outputs.

Monitoring can be applied to the overall gen AI application and to individual components. We
prioritize monitoring at the application level. This is because if the application is performant
and monitoring proves that, it implies that all components are also performant. You can also
apply the same practices to each of the prompted model components to get more granular
results and understanding of your application.

Skew detection in traditional ML systems refers to training-serving skew that occurs when
the feature data distribution in production deviates from the feature data distribution
observed during model training. In the case of Gen AI systems using pretrained models in
components chained together to produce the output, we need to modify our approach. We
can measure skew by comparing the distribution of the input data we used to evaluate our
application (the test set as described under the Data Curation and Principles section above)
and the distribution of the inputs to our application in production. Once the two distributions
drift apart,further investigation is needed. The same process can be applied to the output
data as well.

Operationalizing Generative AI on Vertex AI using ML Ops

39September 2024

Figure 11. Drift/skew detection process overview

Like skew detection, the drift detection process checks for statistical differences between
two datasets. However, instead of comparing evaluations and serving inputs, drift looks for
changes in input data. This allows you to check how the inputs and therefore the behavior of
your users changed over time. This is the same as traditional MLOps.

Given that the input to the application is typically text, there are a few approaches to
measuring skew and drift. In general all the methods are trying to identify significant
changes in production data, both textual (size of input) and conceptual (topics in input),
when compared to the evaluation dataset. All these methods are looking for changes that
could potentially indicate the application might not be prepared to successfully handle the
nature of the new data that are now coming in. Some common approaches are calculating
embeddings and distances, counting text length and number of tokens, and tracking
vocabulary changes, new concepts and intents, prompts and topics in datasets, as well
as statistical approaches such as least-squares density difference,22 maximum mean
discrepancy (MMD),23 learned kernel MMD,24 or context-aware MMD.25 As gen AI use cases
are so diverse, it is often necessary to create additional custom metrics that better capture
abnormal changes in your data.

Operationalizing Generative AI on Vertex AI using ML Ops

40September 2024

Continuous evaluation is another common approach to GenAI application monitoring. In
a continuous evaluation system, you capture the model's production output and run an
evaluation task using that output, to keep track of the model's performance over time. One
approach is collecting direct user feedback, such as ratings (for example thumbs up/down),
which provides immediate insight into the perceived quality of outputs. In parallel, comparing
model-generated responses against established ground truth, often collected through
human assessment or as a result of an ensemble AI Model approach, allows for deeper
analysis of performance. Ground truth metrics can be used to generate evaluation metrics
as described in the Evaluation section. This process provides a view on how your evaluation
metrics changed from when you developed your model to what you have in production today.

As with traditional monitoring in MLOps an alerting process should be deployed for notifying
application owners when a drift, skew or performance decay from evaluation tasks is
detected. This can help you promptly intervene and resolve issues. This is achieved by
integrating alerting and notification tools into your monitoring process.

Monitoring expands beyond drift, skew and evaluation tasks. Monitoring in MLOps includes
efficiency metrics like resources utilization and latency. Efficiency metrics are as relevant and
important in gen AI as they are in any other AI application.

Vertex AI provides a set of tools that can help with monitoring. Model Evaluation for gen AI26
tasks can be used for classification, summarization, question answering, and text generation
tasks. Vertex Pipelines can be used to allow the recurrent execution of evaluation jobs in
production as well as running pipelines for skew and drift detection processes.

Operationalizing Generative AI on Vertex AI using ML Ops

41September 2024

Govern

In the context of MLOps governance encompasses all the practices, and policies that
establish control, accountability, and transparency over the development, deployment, and
ongoing management of machine learning (ML) models, including all the activities related to
the code, data and models lifecycle.

As mentioned in the Develop & Experiment section the chain element and the relative
components become a new type of assets that need to be governed over the full lifecycle
from development to deployment, to monitoring.

The governance of the chain element lifecycle extends to lineage tracking practices as well.

While for predictive AI systems lineage focuses on tracking and understanding the complete
journey of a machine learning model, in gen AI, lineage goes beyond the model artifact
extending to all the components in the chain. This includes the data and models used and
their lineage, the code involved and the relative evaluation data and metrics. This can help
auditing, debugging and improvements of the models

Along with these new practices, existing MLOps and DevOps practices still apply to MLOps
for gen AI:

1.	 The need to govern the data lifecycle; see “Data Practices”.

2.	 The need to govern the tuned model lifecycle; see “Tuning and Training”.

3.	 The need to govern the code lifecycle; see “Deployment of GenAI
System components”.

Operationalizing Generative AI on Vertex AI using ML Ops

42September 2024

The next segment will introduce a set of products that allow developers to perform
governance of the data, model and code assets. We will discuss products like Google
Cloud Dataplex, which centralizes the governance of model and data, Vertex ML Metadata
and Vertex Experiment, which allows developers to register experiments, their metrics
and artifacts.

The role of an AI platform for gen
AI operations
Alongside the explosion of both predictive and gen AI applications, AI platforms, like Vertex
AI,11 have emerged as indispensable tools for organizations seeking to leverage the power of
Artificial Intelligence (AI). These comprehensive platforms provide a unified environment that
streamlines the entire AI lifecycle, from data preparation and model training to deployment,
automation, continuous integration/continuous delivery (CI/CD), governance, and monitoring.

At the heart of an AI platform lies its ability to support diverse AI development needs.
Whether you seek to utilize pre-trained AI solutions, adapt existing models through tuning
or transfer learning, or embark on training your own large models, AI platforms provide the
infrastructure and tools necessary to support these journeys. The advent of these platforms
has revolutionized the way organizations approach AI, enabling them to productionize AI
applications in a secure, enterprise-ready, responsible, controlled and scalable manner.
These platforms accelerate innovation as well as foster reproducibility and collaboration
while reducing costs and maximizing Return on Investment (ROI).

Operationalizing Generative AI on Vertex AI using ML Ops

43September 2024

The new gen AI paradigm discussed in prior sections demands a robust and reliable AI
platform that can seamlessly integrate and orchestrate a wide range of functionalities.
These functionalities include model tuning for specific tasks; leveraging paradigms like
retrieval augmented generation3 (RAG) to connect to internal and external data sources;
and pre-training or instruction fine-tuning large models from scratch. Complex applications
also often require chaining with other models, such as classifiers to route inputs to the
appropriate LLM/ML model, extraction of customer information from a knowledge base,
inclusion of safety checks, or even creation of caching systems for cost optimization.

Figure 12. Key components of Vertex AI for gen AI

Key components of Vertex AI for gen AI

Vertex AI eliminates the complexities of managing the entire infrastructure required for AI
development and deployment. Instead, Vertex AI offers a user-centric approach, providing
on-demand access to the needed resources. This flexibility empowers organizations to
focus on innovation and collaboration, rather than infrastructure management, and up-
front hardware purchase. The features of Vertex AI that support gen AI development can be
grouped into eight areas.

Operationalizing Generative AI on Vertex AI using ML Ops

44September 2024

Discover: Vertex Model Garden

As discussed before, there is already a wide variety of available foundation models, trained
on a broad range of datasets, and the cost of training a new foundation model can be
prohibitive. Thus it often makes sense for companies to adapt existing foundation models
rather than creating their own from scratch. As a result, a platform facilitating seamless
discovery and integration of diverse model types is critical.

Vertex AI Model Garden1 supports these needs, offering a curated collection of over
150 Machine Learning and gen AI models from Google, Google partners, and the open-
source community. It simplifies the discovery, customization, and deployment of both
Google’s proprietary foundational models and diverse open-source models across a
vast spectrum of modalities, tasks, and features. This comprehensive repository permits
developers to leverage the collective research on artificial intelligence models within a single
streamlined environment.

Model Garden encompasses a diverse range of modalities such as Language, Vision, Tabular,
Document, Speech, Video, and Multimodal data. This broad coverage enables developers
to tackle a multitude of tasks, including generation, classification, regression, extraction,
recognition, segmentation, tracking, translation, and embedding. Model Garden houses
Google’s proprietary and foundational models (like Gemini,27 PaLM 2,28 Imagen29) alongside
numerous popular open source and third-party partner models like like Llama 3,30 T5 Flan,31
BERT,32 Stable Diffusion,33 Claude 3 (Anthropic),34 and Mistral AI.35 Additionally, it offers task-
specific models for occupancy analysis, watermark detection, text-moderation, text-to-video,
hand-gesture recognition, product identification, and tag recognition, among others. Every
model36 in Vertex Model Garden has a model card which includes a description of the model,
the main use cases that can cover, and the option (if available) to tune the model or deploy
it directly.

Operationalizing Generative AI on Vertex AI using ML Ops

45September 2024

Model Garden fosters experimentation by facilitating access to Google’s proprietary
foundational models through the Vertex AI Studio UI,37 a playground where you can play
around with prompts, models, and open-source models using provided Colab notebooks.
One-click deployment is available for some external models, and there are more than 40
models available for fine-tuning for specific needs. Furthermore, the platform allows users to
leverage technologies like vLLM38 and quantization techniques for optimizing deployments for
efficiency and reduced costs. We present below an overview of some of the models in Model
Garden. For an up-to-date list, please visit.36

Operationalizing Generative AI on Vertex AI using ML Ops

46September 2024

Model Type Description Details

First-party models Foundation models

Leverage multimodal models
from Google across vision,
dialog, code generation, and
code completion.

Gemini39 and Palm240

Imagen for text-to-image41

Codey for code generation
and completion42

Chirp for speech-to-text43

First-party models Pre-trained APIs

Build and deploy AI
applications faster with our
pre-trained APIs powered by
the best Google AI research
and technology.

Text-to-Speech44

Natural Language processing45

Translation46

Vision47

Open models Open source models

Access a wide variety of
enterprise-ready open
source models

Google’s Gemma,48 PaliGemma,16
CodeGemma49

Meta's Llama30

TII's Falcon50

Mistral AI51

BERT,32 T-5 FLAN,31
ViT,52 EfficientNet53

Third-party models Third-party models

Model Garden will support
third-party models
from partners with
foundation models.

Anthropic’s Claude 3 Haiku,
Sonnet and Opus54,55

Table 2. An overview of some of the models in Model Garden [Last Updated: March 18th, 2024]

Operationalizing Generative AI on Vertex AI using ML Ops

47September 2024

Prototype: Vertex AI Studio & Notebooks

Rapid development and prototyping capabilities are also essential for developing gen AI
applications. Vertex AI prioritizes inclusivity and flexibility in its development environments,
catering to a wide range of developer preferences and proficiency levels. This platform
provides options for both console-driven and programmatic development workflows. Users
can leverage the intuitive web interface for end-to-end application creation or utilize various
APIs for deeper customization and control. These include the REST API56 and dedicated
SDKs for Python,57 NodeJS58 and Java,59 ensuring compatibility with diverse programming
languages and ecosystems. Developers can choose to use the tools and IDEs of their
choice for interacting with the platform, or take advantage of Vertex-native tools like Vertex
Colab Enterprise or Vertex Workbench to explore and experiment with code within familiar
notebook environments.

Vertex AI Studio60 provides a unified console-driven entry point to access and leverage the
full spectrum of Vertex AI's gen AI services. It facilitates exploration and experimentation with
various Google first party foundation models (for example, PaLM 2, Gemini, Codey, Imagen,
and Universal Speech Model). Additionally, it offers prompt examples and functionalities
for testing distinct prompts and models with diverse parameters. It’s also possible to adapt
existing models through various techniques like supervised fine-tuning (SFT), reinforcement
learning tuning techniques, and Distillation, and deploy gen AI applications in just a few
clicks. Vertex AI Studio considerably simplifies and democratizes gen AI adoption, catering
to a variety of users, from business analysts to machine learning engineers. You can see the
homepage of Vertex AI Studio in Figure 13.

Operationalizing Generative AI on Vertex AI using ML Ops

48September 2024

Figure 13. Vertex AI Studio - Homepage

Customize: Vertex AI training & tuning

While prompt engineering and augmentation are sufficient for some gen AI use cases, other
cases require training, tuning and adapting the models to get the best results. Vertex AI
provides a comprehensive platform for training and adapting LLMs, supporting a range of
techniques and approaches from prompt engineering to training models from scratch.

Operationalizing Generative AI on Vertex AI using ML Ops

49September 2024

Train

For full-scale LLM training, TPUs and GPUs are vital because of their superior processing
power and memory capacity compared to CPUs. GPUs excel at parallel processing, enabling
faster model training. TPUs, specifically designed for machine learning tasks, offer even
faster processing and higher energy efficiency. This makes them ideal for large-scale,
complex models. Google Cloud provides a range of offerings to support LLM training,
including TPU VMs with various configurations, pre-configured AI platforms like Vertex AI,
and dedicated resources like Cloud TPU Pods for scaling up training. These offerings allow
users to choose the right infrastructure for their needs, accelerating LLM development and
enabling cutting-edge research and applications.

Tune

Vertex AI also provides a comprehensive solution for adapting pre-trained LLMs. It supports
a spectrum of techniques from a non-technical prompt engineering playground at inference
time, to data-driven approaches involving tuning, reinforcement learning and distillation
methods during the development or adaptation phase. The following five techniques – many
of which are unique to Vertex AI – enable users to explore and implement them effectively.
This applies to both proprietary and open-source LLMs, allowing you to achieve superior
results while optimizing for costs and latency requirements.

•	 Prompt engineering61 leverages carefully crafted natural language prompts, potentially
chained and enriched with external knowledge and examples, to nudge the LLM towards
desired outputs without necessitating further training. Vertex AI through Vertex AI Studio
offers a dedicated playground for crafting, testing, comparing and managing diverse
prompts and techniques. Users can access various pre-built prompt templates within the
platform and leverage public prompting guidelines62 for Google’s proprietary large models.

Operationalizing Generative AI on Vertex AI using ML Ops

50September 2024

•	 Supervised fine-tuning (SFT)63 on Vertex AI facilitates model adaptation by leveraging a
set of labeled examples (even a few hundred is enough) to tune a model on specific tasks
and contexts within domain-specific datasets. The required examples resemble the one-
shot example structure employed in the construction of a prompt. This effectively extends
the few-shot learning approach for enhanced optimization. This focused tuning enables
the model to encode additional parameters in the model necessary for mimicking desired
behaviors such as improved complex prompt comprehension, adaptation to specific
output formats, correcting errors, and learning new tasks. The SFT tuning approach on
Vertex AI, minimizes computational overhead and time while yielding an updated model
that integrates the newly acquired parameters with the original model’s core parameters.

•	 Reinforcement learning with human feedback (RLHF),64 available on Vertex AI for
foundational models like PaLM 2,and open-source models like T5 (s-xxl) and Llama2,
leverages human feedback to train large models to align with human preferences. This
technique is well-suited in complex tasks involving preference modeling and optimizes
LLMs on intricate, sequence-level objectives not easily addressed by traditional
supervised fine-tuning. The process involves first training a reward model using a human
preference dataset, then utilizing it to score the output from the LLM, and finally applying
reinforcement learning to optimize the LLM. This approach is recognized as a key driver of
success in conversational large language models.

•	 Distillation step-by-step20 is an advanced distillation technique transferring knowledge
from a significantly larger model (known as teacher model) to a smaller task-specific
model (known as student model), preserving important information while reducing model
size. Step-by-Step Distillation20 surpasses common techniques by requiring significantly
less data. This method, accessible on Vertex AI,65 significantly reduces inference costs and
latencies while minimizing performance impact in the resulting smaller LLM.66

Operationalizing Generative AI on Vertex AI using ML Ops

51September 2024

Orchestrate

Any training or tuning job you run can be orchestrated and then operationalized using Vertex
Pipelines,13 a service that aims to simplify and automate the deployment, management, and
scaling of your ML workflows.

It provides a platform for building, orchestrating, scheduling and monitoring complex and
custom ML pipelines, enabling you to efficiently translate your models from prototypes
to production.

Vertex Pipelines is also the platform behind all the managed tuning and evaluation services
for the Google Foundation Models on Vertex AI. This ensures consistency as you can
consume and extend those pipelines easily, without having to familiarize yourself with
many services.

Getting started with Vertex Pipelines is simple: you define the pipeline’s step sequence in
a Python file utilizing Kubeflow SDK.67 For further details and comprehensive onboarding,
consult the official documentation.68

Operationalizing Generative AI on Vertex AI using ML Ops

52September 2024

Chain & Augment: Vertex AI Grounding, Extensions, and RAG
building blocks

Beyond training, tuning and adapting models and prompts directly, Vertex AI offers a
comprehensive ecosystem for augmenting LLMs, to address the challenges of factual
grounding and hallucination. The platform incorporates emerging techniques like RAG and
agent-based approaches.

RAG overcomes limitations by enriching prompts with data retrieved from vector databases,
circumventing pre-training requirements and ensuring the integration of up-to-date
information. Agent-based approaches, popularized by ReAct prompting, leverage LLMs as
mediators interacting with tools like RAG systems, APIs, and custom extensions. Vertex AI
facilitates this dynamic information source selection, enabling complex queries, real-time
actions, and the creation of multi-agent systems connected to vast information networks for
sophisticated query processing and real-time decision-making.

Vertex AI function calling69 empowers users by enhancing the capabilities of language
models (LLMs). It enables LLMs to access real-time data and interact with external systems,
providing users with more accurate and up-to-date information. To do that, users need to
provide function definitions such as description, inputs, outputs to the gen AI model. Instead
of directly executing functions, the LLM intelligently analyzes user requests and generates
structured data outputs. These outputs propose which function to call and what arguments
to use.

Vertex AI Grounding5 helps users connect large models with verifiable information by
grounding them to internal data corpora on Vertex AI Agent Builder70 or external sources
using Google Search. This enables two key functionalities: verifying model-generated outputs
against internal or external sources and creating RAG systems using Google’s advanced
search capabilities that produce quality content grounded in your own or web search data.

Operationalizing Generative AI on Vertex AI using ML Ops

53September 2024

Vertex AI extensions6 let developers integrate Vertex Foundation Models with real-time
data and real-world actions through APIs and functions, enabling task execution and allowing
enhanced capabilities. This extends to leveraging 1st party extensions like Vertex AI Search7
and Code Interpreter,71 or 3rd party extensions for triggering and completing transactions.
Imagine building an application that leverages the LLM's knowledge to plan a trip and
seamlessly utilizes internal APIs to book hotels and flights, all within a single interface.
Additionally, Vertex Extensions facilitate function calling with the gemini-pro model, enabling
you to generate descriptions, pass them to the large model, receive JSON with function
arguments, and automatically call the function.

Vertex AI Agent Builder70 is an out-of-the-box solution that allows you to quickly build gen
AI agents, to be used as conversational chatbots or as part of a search engine. With Vertex
AI Agent Builder, you are be able to easily ground your agents by pointing to a diverse range
of data sources, including structured datastores such us BigQuery, Spanner, Cloud SQL,
unstructured sources like website content crawling and cloud storage as well as connectors
to Google drive and other APIs. Agent Builder utilizes a robust foundation of Google Search
technologies, encompassing semantic search, content chunking, ranking, algorithms,
and user intent understanding. Under the hood it optimizes document loading, chunking,
embedding models, and ranking strategies. It abstracts away these complexities and allows
users to simply specify their data source to initiate the gen AI-powered agent.This approach
is ideal for organizations seeking to build robust search experiences for standard use cases
without extensive technical expertise.

Vector databases are specialized systems for managing multi-dimensional data. This data,
encompassing images, text, audio, video, and other structured or unstructured formats,
is represented as vectors capturing its semantic meaning. Vector databases accelerate
searching and retrieval within these high-dimensional spaces, enabling efficient tasks like
finding similar images from billions or extracting relevant text snippets based on various

Operationalizing Generative AI on Vertex AI using ML Ops

54September 2024

inputs. For a deeper dive into these topics, refer to 4 and 19. Vertex AI offers three flexible
solutions for storing and serving embeddings at scale, catering to diverse use cases and
user profiles.

Vertex AI Vector Search7 is a highly scalable low-latency similarity search and fully
managed vector database scaling to billions of vector embeddings with auto-scaling. This
technology, built upon ScaNN72 (a Google-developed technology used in products like
Search, YouTube, and Play), allows you to search from billions of semantically similar or
related items within your stored data. In the context of gen AI, the most common use cases
where Vertex Vector Search can be used are:

1.	 Finding similar items (either text or image) based solely on their semantic meaning, in
conjunction with an embedding model.

2.	 Creating a hybrid search approach that combines semantic and keyword or metadata
search to refine the results.

3.	 Extracting relevant information from the database to feed into LLMs, enabling them to
generate more accurate and informed responses.

Vertex AI Vector Search primarily functions as a vector database for storing pre-generated
embeddings. These embeddings must be created beforehand using separate models like
Vertex Embedding models73 (namely textembedding-gecko, text-embedding-gecko-
multilingual, or multimodalembedding). Choosing Vertex Vector Search is optimal
when you require control over aspects like the chunk, retrieval, query and models strategy.
This includes fine-tuning an embedding model for your specific data. However, if your use
case is a standard one requiring little customization, a readily available solution like Vertex
Search might be a better choice.

Operationalizing Generative AI on Vertex AI using ML Ops

55September 2024

Vertex AI Feature Store74 is a centralized and fully managed repository for ML features
and embedding. It enables teams to share, serve, and reuse machine learning features and
embeddings effortlessly alongside other data. Its native BigQuery23 integration eliminates
duplication, simplifies lineage tracking and preserves data governance. Vertex AI Feature
Store supports offline retrieval and an easy and fast online serving for machine learning
features and embeddings. Vertex AI Feature Store is a good choice when you want to iterate
and maintain different embedding versions alongside other machine learning features in a
single place.

Vertex AI offers the flexibility to seamlessly create and connect various products to build
your own custom grounding, RAG, and Agent systems. This includes utilizing diverse
embedding models (multimodal, multilingual), various vector stores (Vector Search, Feature
Store) and search engines like Vertex AI Agent Builder, extensions, grounding, and even SQL
query generation for complex natural language queries. Moreover, Vertex AI provides SDK
integration with LangChain9 to easily build and prototype applications using the umbrella
of Vertex AI products. For further details and integration information, consult the official
documentation75 and official examples.76

Evaluate: Vertex AI Experiments, Tensorboard, &
evaluation pipelines

In the dynamic world of gen AI, experimentation and evaluation are the cornerstones of
iterative development and continuous improvement. With a multitude of variables influencing
Gen AI models (prompt engineering, model selection, data interaction, pretraining,
and tuning), evaluation goes hand-in-hand with experimentation. The more seamlessly
experiments and evaluations can be integrated into the development process, the

Operationalizing Generative AI on Vertex AI using ML Ops

56September 2024

smoother and more efficient the overall development becomes. Vertex AI provides cohesive
experimentation and evaluation products permitting connected iterations over applications
and models alongside their evaluations.

Experiment

The process of selecting, creating, and customizing machine learning (including large
models) and its applications involves significant experimentation, collaboration, and iteration.

Vertex AI seamlessly integrates experimentation and collaboration into the development
lifecycle of AI/ML and gen AI models and applications. Its Workbench Instances77 provide
Jupyter-based development environments for the entire data science workflow, connected
to other Google Cloud services and with GitHub synchronization capabilities. Vertex Colab
Enterprise78 accelerates the AI workflow by enabling collaborative coding and leveraging
code completion and generation features.

Vertex AI also provides two tools for tracking and visualizing the output of many experiment
cycles and training runs. Vertex AI Experiments79 facilitates meticulous tracking and
analysis of model architectures, hyperparameters, and training environments. It logs
experiments, artifacts, and metrics, enabling comparison and reproducibility across multiple
runs. This comprehensive tracking permits data scientists to select the optimal model
and architecture for their specific use case. Vertex AI TensorBoard80 complements the
experimentation process by providing detailed visualizations for tracking, visualizing, and
sharing ML experiments. It offers a range of visualizations, including loss and accuracy
metrics tracking, model computational graph visualization, and weight and bias histograms,
which - for example - can be used for tracking various metrics pertaining to training and
evaluation of gen AI models with different prompting and tuning strategies. It also projects
embeddings to lower-dimensional space, and displays image, text, and audio samples.

Operationalizing Generative AI on Vertex AI using ML Ops

57September 2024

Evaluation

Vertex AI also provides a comprehensive set of evaluation tools for gen AI, from ground truth
metrics to using LLMs as raters.

For Ground Truth-based metrics, Automatic Metrics in Vertex AI81 lets you evaluate a model
based on a defined task and “ground truth” dataset. For LLM-based evaluation, Automatic
Side by Side (Auto SxS) in Vertex AI82 uses a large model to evaluate the output of multiple
models or configurations being tested, helping to augment human evaluation at scale.

In addition to that, users can also leverage Rapid Evaluation API, which offers a set of pre-
built metrics for evaluating gen AI applications and relative SDK, integrated into the Vertex
AI Python SDK for rapid and flexible, notebook-based, prototyping. To get started with Rapid
Evaluation Vertex AI SDK see example in the official documentation.83

Predict: Vertex AI endpoints & monitoring

Once developed, a production gen AI application must be deployed, including all its model
components. If the application uses any models that have been trained or adapted, those
models need to be deployed to their own serving endpoints. You can serve any model in the
Model Garden through Vertex AI Endpoints21,which acts as the gateway for deploying your
trained machine learning models. They allow you to serve online predictions with low latency,
manage access controls, and monitor model performance easily through Model Monitoring.
Endpoints also offer scaling options to handle varying traffic demands, ensuring optimal user
experience and reliability.

Operationalizing Generative AI on Vertex AI using ML Ops

58September 2024

Along with the prediction service, Vertex AI offers the following features for all Google
managed models:

•	 Citation checkers: Gen AI on Vertex performs Citation checks71. Citations are important
for LLMs and gen AI for several reasons. Citing sources ensures proper acknowledgment
of sources and prevents plagiarism and demonstrates transparency and accountability.
Citing sources is essential for LLMs and gen AI also because they help identify,
understand potential biases, and enable reproducibility and verification. For example in
Google Cloud,84 the gen AI models are designed to produce original content, limiting the
possibility of copying existing contents. If this happens, Google Cloud provides quotes for
websites and code repositories.

•	 Safety scores: Safety attributes are crucial for LLMs and gen AI to mitigate potential
risks like bias, lack of explainability, and misuse. These attributes help detect and mitigate
biased outputs and mitigate misuse, enabling these tools to be used responsibly. As
LLMs and gen AI evolve, incorporating safety attributes will be increasingly essential for
responsible and ethical use. For example, Google Cloud added safety scores in Vertex
AI PaLM API and Vertex AI Gemini API85: content processed through the API is checked
against a list of safety attributes, including "harmful categories" and sensitive topics. Each
attribute has a confidence score between 0.0 and 1.0, indicating the likelihood of the
input belonging to that category. These safety filters can be used in conjunction with all
models: be it proprietary ones like Palm2 and Gemini or OSS ones like the ones available in
Model garden.

•	 Watermarking: With AI-based tools becoming increasingly popular for creation of
content, it’s very important to identify if an image has been created using AI. Vertex AI
offers digital watermarking and verification for AI-generated images86 using the algorithm
SynthID87 developed by Google DeepMind.

Operationalizing Generative AI on Vertex AI using ML Ops

59September 2024

•	 Content moderation and bias detection: By using the Content moderation88 and Bias89
detection tools on Vertex AI, you can add an extra layer of security on the responses
of the LLMs to mitigate the risk that the model training and tuning may sway a model to
generate outputs that aren’t fair or appropriate for the task.

Govern: Vertex AI Feature Store, Model Registry,
and Dataplex

Addressing the multifaceted requirements of data and model lineage and governance in
gen AI requires a comprehensive strategy that tackles both conventional challenges and
novel regulatory or technical complexities associated with large models. By adopting robust
governance, observability, and lineage practices in the development of gen AI solutions,
organizations can ensure comprehensive tracking, iteration, and evolution of data. They
can also track the large models used, prompt adaptations, tuning, and other artifacts. This
facilitates reproducibility of results, transparency and understanding of generated content
sources, troubleshooting, compliance enforcement, and enhanced reliability and security.
These practices collectively enable the ethical and responsible development and deployment
of gen AI solutions. This fosters internal and external trust and fairness in gen AI models and
practices. Vertex AI and Google Cloud offer the following comprehensive suite of tools for
unified lineage, governance and monitoring, effectively addressing these critical concerns.

In the context of governance and lineage, Vertex AI Feature Store74 offers:

•	 Track feature and embeddings versions and lineage, ensuring transparency

•	 Monitor feature (prompt) and embedding, response drift, and identify potential
issues proactively

•	 Store feature formulas and discover relevant features or embeddings for different
use cases

Operationalizing Generative AI on Vertex AI using ML Ops

60September 2024

•	 Utilize feature selection algorithms to optimize model performance

•	 Consolidate and unify all machine learning data within a singular repository encompassing
numerical data, categorical data, textual data, and embeddings representations

Vertex AI Model Registry12 serves as a centralized repository for comprehensive lifecycle
management of both Google proprietary foundational and open-source Machine Learning
models. This includes gen AI models in addition to predictive models. This unified platform
enables registration, storage, and version control of diverse model types, including various
iterations of tuning for large models. Vertex AI Model Registry seamlessly integrates with
Vertex Pipelines,13 facilitating orchestration and management of training and tuning jobs
while leveraging lineage capabilities for recording and documenting the lineage from
datasets to models and associated artifacts. It also couples with Vertex AI Experiments79
and Vertex AI Model Evaluation,90 enabling performance monitoring and comparison of
different model versions alongside their artifacts – all within a single interface. Furthermore,
Vertex AI Model Registry bolsters observability by providing integrated configuration and
access to Vertex AI Model Monitoring91 and logging functionalities. This enables proactive
identification and mitigation of both training-serving skew and prediction drift, ensuring
reliability and accuracy of deployed models. Users can directly assign desired model versions
to endpoints for one-click deployment from Vertex Model Registry or leverage aliases for
simplified deployment.

Google Cloud Dataplex14 provides an organization-wide lineage across product boundaries
in Google Cloud. Within the domains of AI and gen AI (and more broadly across data analytics
and AI/ML) Dataplex seamlessly integrates with BigQuery and Vertex AI. Dataplex facilitates
the unification, management, discovery, and governance of both data and models. Through
comprehensive data lineage, quality, and metadata management capabilities it provides
actionable insights for comprehensive data and model understanding. This promotes
compliance, facilitates data analysis, and guarantees the training of machine learning
models on trusted data sources. This in turn leads to enhanced accuracy and reliability. This

Operationalizing Generative AI on Vertex AI using ML Ops

61September 2024

integration permits users across an organization to identify ‘champion models’ and ‘golden
datasets and features’ across projects and regions in a secure way by adhering to identity
access management (IAM)92 boundaries. In short, Dataplex encapsulates a framework within
an organization that governs the interaction between people, processes and technology
across all the products in Google Cloud.

Conclusion
The explosion of gen AI in the last several years introduced fundamental changes in the way
AI applications are developed – but far from upending the MLOps discipline, these changes
have only reinforced its basic principles and processes. As we have seen, the principles of
MLOps that emphasize reliability, repeatability, and dependability in ML systems development
are comfortably extended to include the innovations of gen AI. Some of the necessary
changes are deeper and more far-reaching than others, but nowhere do we find any change
that MLOps cannot accommodate.

As a result, many tools and processes built to support traditional MLOps can also support
the requirements of gen AI. Vertex AI, for instance, is a powerful platform that can be used to
build and deploy machine learning models and AI applications. It provides a comprehensive
suite of functions for developing both Predictive and gen AI systems, encompassing data
preparation, pre-trained APIs, AutoML capabilities, training and serving hardware, advanced
fine-tuning techniques and deployment tools, and a diverse selection of proprietary and
open-source foundation models. It also offers evaluation methods, monitoring capabilities,
and governance tools, all unified within a single platform to streamline the AI development
lifecycle. It’s built on Google Cloud Platform, which provides a scalable, reliable, secure and
compliant infrastructure for machine learning. It’s a good choice for organizations that want
to build and deploy machine learning models and AI applications.

Operationalizing Generative AI on Vertex AI using ML Ops

62September 2024

The next few years will undoubtedly see gen AI extended in directions that today are
unimaginable. Regardless of the direction these developments take, it will continue to
be important to build on solid engineering processes that embody the basic principles
of MLOps. These principles support the development of scalable, robust production AI
applications today, and no doubt will continue to do so into the future.

Operationalizing Generative AI on Vertex AI using ML Ops

63September 2024

Endnotes

1.	 Model Garden on Vertex AI. Available at: https://cloud.google.com/model-garden

2.	 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang,
Jeff Dean, William Fedus. 2022. Emergent Abilities of Large Language Models. Available at: https://arxiv.org/
pdf/2206.07682.pdf

3.	 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. 2022. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. Available at: https://arxiv.org/pdf/2005.11401.pdf

4.	 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, Yuan Cao, Department of
Computer Science, Princeton University, Google Research, Brain team, REACT: SYNERGIZING REASONING AND
ACTING IN LANGUAGE MODELS. Available at: https://arxiv.org/pdf/2210.03629.pdf

5.	 Grounding in Vertex AI. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/grounding/
ground-language-models

6.	 Vertex Extensions. Connect models to APIs by using extensions. Available at: https://cloud.google.com/
vertex-ai/docs/generative-ai/extensions/overview

7.	 Overview of Vertex AI Vector Search. Available at: https://cloud.google.com/vertex-ai/docs/vector-search/
overview

8.	 What is Vertex AI Agent Builder? Available at: https://cloud.google.com/generative-ai-app-builder/docs/
introduction

9.	 LangChain. Get your LLM application from prototype to production. Available at: https://www.langchain.
com/

10.	 Introduction to the Vertex AI SDK for Python. Available at: https://cloud.google.com/vertex-ai/docs/python-
sdk/use-vertex-ai-python-sdk

11.	 Introduction to Vertex AI. Available at: https://cloud.google.com/vertex-ai/docs/start/introduction-unified-
platform

12.	 Introduction to Vertex AI Model Registry. Available at: https://cloud.google.com/vertex-ai/docs/model-
registry/introduction

Operationalizing Generative AI on Vertex AI using ML Ops

64September 2024

13.	 Introduction to Vertex AI Pipelines. Available at: https://cloud.google.com/vertex-ai/docs/pipelines/
introduction

14.	 Dataplex. Available at: https://cloud.google.com/dataplex

15.	 BigQuery. Available at: https://cloud.google.com/bigquery?hl=en

16.	 PaLi-Gemma model card. Available at: https://ai.google.dev/gemma/docs/paligemma/model-card

17.	 Version Control. Available at: https://en.wikipedia.org/wiki/Version_control

18.	 Continuous integration. Available at: https://wikipedia.org/wiki/Continuous_integration

19.	 TFX is an end-to-end platform for deploying production ML pipelines. Available at: https://www.tensorflow.
org/tfx

20.	Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay
Krishna, Chen-Yu Lee, Tomas Pfister. 2023. Distilling Step-by-Step! Outperforming Larger Language Models with
Less Training Data and Smaller Model Sizes. Available at: https://arxiv.org/pdf/2305.02301.pdf

21.	 Vertex Endpoints. Use private endpoints for online prediction. Available at: https://cloud.google.com/vertex-
ai/docs/predictions/using-private-endpoints

22.	Tuan Duong Nguyen, Marthinus Christoffel du Plessis, Takafumi Kanamori, Masashi Sugiyama, 2014.
Constrained Least-Squares Density-Difference Estimation. Available at: https://www.ms.k.u-tokyo.ac.jp/
sugi/2014/CLSDD.pdf

23.	Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander Smola, 2012. A Kernel
Two-Sample Test. Available at: https://jmlr.csail.mit.edu/papers/v13/gretton12a.html

24.	Oliver Cobb, Arnaud Van Looveren, 2022. Context-Aware Drift Detection. Available at: https://arxiv.org/
pdf/2203.08644.pdf

25.	Google Gemma Model. Available at: https://gemini.google.com/

26.	Perform metrics-based evaluation. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/
models/evaluate-models

27.	 Gemini Team, Google, 2023. Gemini: A Family of Highly Capable Multimodal Models. Available at: https://
storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf

28.	Anil, Dai et al., 2023. PaLM 2 Technical Report. Available at: https://arxiv.org/abs/2305.10403

Operationalizing Generative AI on Vertex AI using ML Ops

65September 2024

29.	Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David
J Fleet, Mohammad Norouzi, 2022. Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding. Available at: https://arxiv.org/abs/2205.11487

30.	Build the future of AI with Meta Llama 3. Available at: https://llama.meta.com/llama3

31.	 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun
Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang,
Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff
Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei. 2022. Scaling Instruction-Finetuned
Language Models. Available at: https://arxiv.org/abs/2210.11416

32.	Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, 2018. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. Available at: https://arxiv.org/abs/1810.04805

33.	Stable Diffusion. Available at: https://github.com/CompVis/stable-diffusion

34.	Vertex AI Function Calling. Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/
function-calling

35.	Mistral AI. Available at: https://mistral.ai/

36.	Models available in Model Garden. Available at: https://cloud.google.com/vertex-ai/docs/start/explore-
models#available-models

37.	 Vertex AI Studio. Customize and deploy generative models. Available at: https://cloud.google.com/
generative-ai-studio

38.	vLLM. Easy, fast, and cheap LLM serving for everyone. Available at: https://github.com/vllm-project/vllm

39.	Overview of multimodal models. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/
multimodal/overview

40.	Text models. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text

41.	 Imagen on Vertex AI | AI Image Generator. Available at: https://cloud.google.com/vertex-ai/docs/
generative-ai/image/overview

42.	Code models overview. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-
models-overview

Operationalizing Generative AI on Vertex AI using ML Ops

66September 2024

43.	Convert speech to text. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/speech/
speech-to-text

44.	Text-to-Speech AI. Available at: https://cloud.google.com/text-to-speech

45.	Natural Language AI. Available at: https://cloud.google.com/natural-language

46.	Translate docs, audio, and videos in real time with Google AI. Available at: https://cloud.google.com/
translate

47.	 Vision AI. Available at: https://cloud.google.com/vision

48.	Git. Available at: https://git-scm.com/

49.	CodeGemma model card. Available at: https://ai.google.dev/gemma/docs/codegemma/model_card

50.	TII’s Falcon. Available at: https://falconllm.tii.ae/

51.	 Mistral AI. Available at: https://mistral.ai/

52.	Hugging Face, 2024. Vision Transformer (ViT) Documentation. Hugging Face, [online] Available at: 		
https://huggingface.co/docs/transformers/en/model_doc/vit

53.	Mingxing Tan, Quoc V. Le, 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
Available at: https://arxiv.org/abs/1905.11946

54.	Anthropic Claude 3. Available at: https://www.anthropic.com/news/claude-3-haiku

55.	Anthropic Claude 3 on Google Cloud Model Garden. Available at: https://cloud.google.com/blog/products/
ai-machine-learning/announcing-anthropics-claude-3-models-in-google-cloud-vertex-ai

56.	Vertex AI API. Available at: https://cloud.google.com/vertex-ai/docs/reference/rest

57.	 Vertex AI: Python SDK. Available at: https://cloud.google.com/python/docs/reference/aiplatform/latest/
vertexai

58.	Vertex AI: Node.js Client. Available at: https://cloud.google.com/nodejs/docs/reference/aiplatform/latest/
overview

59.	Vertex AI for Java. Available at: https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/
latest/overview

60.	Customize and deploy generative models. Available at: https://cloud.google.com/generative-ai-studio

Operationalizing Generative AI on Vertex AI using ML Ops

67September 2024

61.	 Design text prompts. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/text/text-
prompts

62.	Introduction to prompt design. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/learn/
introduction-prompt-design

63.	Supervised tuning. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-
models#supervised-tuning

64.	RLHF model tuning. Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-text-
models-rlhf

65.	Vertex AI Distilation. Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-
text-models

66.	Create distilled text models. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/models/
distill-text-models

67.	 Pipeline Basics. Available at: https://www.kubeflow.org/docs/components/pipelines/v2/pipelines/pipeline-
basics/

68.	Build a pipeline. Available at: https://cloud.google.com/vertex-ai/docs/pipelines/build-pipeline

69.	Vertex AI Search extension. Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/
extensions/vertex-ai-search

70.	What is Vertex AI Agent Builder? Available at: https://cloud.google.com/generative-ai-app-builder/docs/
introduction

71.	 Generative AI on Vertex AI, Citation Check. Available at: https://cloud.google.com/vertex-ai/generative-ai/
docs/learn/overview#citation_check

72.	Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar, 2020.
Accelerating Large-Scale Inference with Anisotropic Vector Quantization. Available at: https://arxiv.org/
pdf/1908.10396.pdf

73.	Get text embeddings. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/
get-text-embeddings

74.	 About Vertex AI Feature Store. Available at: https://cloud.google.com/vertex-ai/docs/featurestore/latest/
overview

Operationalizing Generative AI on Vertex AI using ML Ops

68September 2024

75.	Google Cloud Vertex AI. Available at: https://python.langchain.com/docs/integrations/llms/google_vertex_
ai_palm

76.	Generative AI - Language - LangChain. Available at: https://github.com/GoogleCloudPlatform/generative-
ai/tree/main/language/orchestration/langchain

77.	 Introduction to Vertex AI Workbench, Workbench Instances. Available at: https://cloud.google.com/vertex-
ai/docs/workbench/introduction

78.	Introduction to Colab Enterprise. Available at: https://cloud.google.com/colab/docs/introduction

79.	 Introduction to Vertex AI Experiments. Available at: https://cloud.google.com/vertex-ai/docs/experiments/
intro-vertex-ai-experiments

80.	Vertex AI TensorBoard Introduction to Vertex AI TensorBoard. Available at https://cloud.google.com/vertex-
ai/docs/experiments/tensorboard-introduction

81.	 Perform metrics-based evaluation. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/
models/evaluate-models

82.	Perform automatic side-by-side evaluation. Available at: https://cloud.google.com/vertex-ai/docs/
generative-ai/models/side-by-side-eval

83.	Rapid Evaluation Vertex AI. Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/models/
rapid-evaluation

84.	Citation metadata. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-
ai#citation_metadata

85.	Responsible AI. Available at: https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-
ai#filters-palm-api

86.	Imagen on Vertex AI | AI Image Generator. Available at: https://cloud.google.com/vertex-ai/docs/
generative-ai/image/overview

87.	 SynthID. Identifying AI-generated content with SynthID. Available at: https://deepmind.google/technologies/
synthid/

88.	Moderate text. Available at: https://cloud.google.com/natural-language/docs/moderating-text

89.	Model bias metrics for Vertex AI. Available at: https://cloud.google.com/vertex-ai/docs/evaluation/model-
bias-metrics

Operationalizing Generative AI on Vertex AI using ML Ops

69September 2024

90.	Model evaluation in Vertex AI. Available at: https://cloud.google.com/vertex-ai/docs/evaluation/
introduction

91.	 Introduction to Vertex AI Model Monitoring. Available at: https://cloud.google.com/vertex-ai/docs/model-
monitoring/overview

92.	Identity and Access Management (IAM). Available at: https://cloud.google.com/iam/docs

	Introduction
	What are DevOps and MLOps?
	Lifecycle of a gen AI system

	Discover
	Develop and experiment
	The foundational model paradigm
	The core component of LLM Systems: A prompted model component
	Chain & Augment
	Tuning & training
	Data Practices
	Evaluate

	Deploy
	Deployment of gen AI systems
	Version control
	Continuous integration of gen AI systems
	Continuous delivery of gen AI systems

	Deployment of foundation models
	Infrastructure validation
	Compression and optimization
	Deployment, packaging, and serving checklist

	Logging and monitoring
	Govern

	The role of an AI platform for gen AI operations
	Key components of Vertex AI for gen AI
	Discover: Vertex Model Garden
	Prototype: Vertex AI Studio & Notebooks
	Customize: Vertex AI training & tuning
	Train
	Tune
	Orchestrate

	Chain & Augment: Vertex AI Grounding, Extensions, and RAG building blocks
	Evaluate: Vertex AI Experiments, Tensorboard, & evaluation pipelines
	Experiment
	Evaluation

	Predict: Vertex AI endpoints & monitoring
	Govern: Vertex AI Feature Store, Model Registry, and Dataplex

	Conclusion
	Endnotes

