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Introduction
Modern machine learning thrives on diverse data—images, text, audio, and more. This 
whitepaper explores the power of embeddings, which transform this heterogeneous data into 
a unified vector representation for seamless use in various applications.

We'll guide you through:

•	 Understanding Embeddings: Why they are essential for handling multimodal data and 
their diverse applications.

•	 Embedding Techniques: Methods for mapping different data types into a common 
vector space.

These low-dimensional numerical 
representations of real-world data 
significantly helps efficient large-
scale data processing and storage 
by acting as means of lossy 
compression of the original data.
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•	 Efficient Management: Techniques for storing, retrieving, and searching vast collections 
of embeddings.

•	 Vector Databases: Specialized systems for managing and querying embeddings, 
including practical considerations for production deployment.

•	 Real-World Applications: Concrete examples of how embeddings and vector databases 
are combined with large language models (LLMs) to solve real-world problems.

Throughout the whitepaper, code snippets provide hands-on illustrations of key concepts.

Why embeddings are important
In essence, embeddings are numerical representations of real-world data such as text, 
speech, image, or videos. They are expressed as low-dimensional vectors where the 
geometric distances of two vectors in the vector space is a projection of the relationships 
between the two real-world objects that the vectors represent. In other words they help you 
with providing compact representations of data of different types, while simultaneously also 
allowing you to compare two different data objects and tell how similar or different they are 
on a numerical scale: for example: The word ‘computer’ has a similar meaning to the picture 
of a computer, as well as the word ’laptop’ but not to the word ‘car’. These low-dimensional 
numerical representations of real-world data significantly helps efficient large-scale data 
processing and storage by acting as means of lossy compression of the original data while 
retaining its important properties.
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One of the key applications for embeddings is retrieval and recommendations, where the 
result is usually from a massive search space. For example, Google Search is a retrieval  with 
the  search space of the whole internet. Today’s retrieval and recommendation systems’ 
success depends on the following:

1.	 Precomputing the embeddings for billions items of the search space.

2.	 Mapping query embeddings to the same embedding space.

3.	 Efficient computing and retrieving of the nearest neighbors of the query embeddings in 
the search space.

Embeddings also shine in the world of multimodality. Most applications work with large 
amounts of data of various modalities: text, speech, image, and videos to name a few. 
Because every entity or object is represented in its own unique format, it’s very difficult 
to project these objects into the same vector space that is both compact and informative. 
Ideally, such a representation would capture as much of the original object’s characteristics 
as possible. An embedding refers to the projected vector of an object from an input space to 
a relatively low-dimensional vector space. Each vector is a list of floating point numbers.
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Figure 1. Projecting objects/content into a joint vector space with semantic meaning

Ideally the embeddings are created so they place objects with similar semantic properties 
closer in the embedding space (a low-dimensional vector space where items can be 
projected). The embeddings can then be used as a condensed, meaningful input in 
downstream applications. For example, you can use them as features for ML models, 
recommender systems, search engines, and many more. So your data not only gets a 
compact numerical representation, but this representation also preserves the semantic 
meanings for a specific task or across a variety of tasks. The fact that these representations 
are task-specific means you can generate different embeddings for the same object, 
optimized for the task at hand. 
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Types of embeddings

Embeddings aim to obtain a low dimensional representation of the original data while 
preserving most of the ‘essential information’. The types of data an embedding represents 
can be of various different forms.  Below you’ll see some standard techniques used for 
different types of data, including text and image.

Text embeddings

Text embeddings are used extensively as part of natural language processing (NLP). They 
are often used to embed the meaning of natural language in machine learning for processing 
in various downstream applications such as text generation, classification, sentiment 
analysis, and more. These embeddings broadly fall into two categories: token/word and 
document embeddings.

Before diving deeper into these categories, it’s important to understand the entire lifecycle 
of text: from its input by the user to its conversion to embeddings. 

Figure 2. The process of turning text into embeddings

It all starts with the input string which is split into smaller meaningful pieces called tokens.  
This process is called tokenization. Commonly, these tokens are wordpieces, characters, 
words, numbers, and punctuations using one of the many existing tokenization techniques.1 
After the string is tokenized, each of these tokens is then assigned a unique integer value 
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usually in the the range: [0, cardinality of the total number of tokens in the corpus]. For 
example, for a 16 word vocabulary the IDs would range between 0-15. This value is also 
referred to as token ID. These tokens can be used to represent each string as a sparse 
numerical vector representation of documents used for downstream tasks directly, or after 
one-hot encoding. One-hot encoding is a binary representation of categorical values where 
the presence of a word is represented by 1, and its absence by 0. This ensures that the token 
IDs are treated as categorical values as they are, but often results in a dense vector the size 
of the vocabulary of the corpus. Snippet 1 and Figure 3 show an example of how this can be 
done using Tensorflow.

# Tokenize the input string data
from tensorflow.keras.preprocessing.text import Tokenizer
data = [
  "The earth is spherical.",
  "The earth is a planet.",
  "I like to eat at a restaurant."]
# Filter the punctiations, tokenize the words and index them to integers  
tokenizer = Tokenizer(num_words=15, filters="!"#$%&()*+,-./:;<=>?[\\]^_'{|}~\t\n", lower=True, 
split=' ')
tokenizer.fit_on_texts(data)
# Translate each sentence into its word-level IDs, and then one-hot encode those IDs 
ID_sequences = tokenizer.texts_to_sequences(data)
binary_sequences = tokenizer.sequences_to_matrix(ID_sequences)
print("ID dictionary:\n", tokenizer.word_index)
print("\nID sequences:\n", ID_sequences)
print("\n One-hot encoded sequences:\n", binary_sequences )

Snippet 1. Tokenizing,  indexing and one-hot encoding strings
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Figure 3. Output of Snippet 1

However, since these Integer IDs (or their corresponding one-hot encoded vectors) are 
assigned randomly to words, they lack any inherent semantic meaning. This is where 
embeddings are much more useful. Although it’s possible to embed character and sub-word 
level tokens as well, let us look at word and document embeddings to understand some of 
the methods behind them.

Word embeddings

In this section, you’ll see a few word embedding techniques and algorithms to both train 
and use word embeddings. While there are many ML driven algorithms developed over 
time optimized for different objectives, the most common ones are GloVe,2 SWIVEL,3 and 
Word2Vec.4 Word embeddings or sub-word embeddings can also be directly obtained from 
hidden layers of language models. However, the embeddings will be different for the same 
word in different contexts of the text. This section focuses on lightweight, context-free 
word embedding and leaves the context-aware document embeddings for the document 
embeddings section. Word embedding can be directly applied to downstream tasks like 
named entity extraction and topic modeling.

Word2Vec is a family of model architectures that operates on the principle of “the semantic 
meaning of a word is defined by its neighbors”, or words that frequently appear close to each 
other in the training corpus. This method can be both used to train your own embeddings 
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from large datasets or be quickly integrated through one of the readily available pre-trained 
embeddings available online.5 The embeddings for each word - which are essentially fixed 
length vectors - are randomly initialized to kick off the process, resulting in a matrix of shape 
(size_of_vocabulary, size_of_each_embedding). This matrix can be used as a lookup table 
after the training process is completed using one of the following methods (see Figure 4). 

•	 The Continuous bag of words (CBOW) approach: Tries to predict the middle word, using 
the embeddings of the surrounding words as input. This method is agnostic to the order 
of the surrounding words in the context. This approach is fast to train and is slightly more 
accurate for frequent words.

•	 The skip-gram approach: The setup is inverse of that of CBOW, with the middle word 
being used to predict the surrounding words within a certain range. This approach is 
slower to train but works well with small data and is more accurate for rare words.

Figure 4. Diagram explaining how CBOW and Skip-Gram methods work
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The Word2Vec algorithms can also be extended to the sub-word level, which has been the 
inspiration for algorithms such as FastText.6 However, one of the major caveats of Word2Vec 
is that although it accounts well for local statistics of words within a certain sliding window, it 
does not capture the global statistics (words in the whole corpus). This shortcoming is what 
methods like the GloVe algorithm address.

GloVe is a word embedding technique that leverages both global and local statistics of words. 
It does this by first creating a co-occurrence matrix, which represents the relationships 
between words. GloVe then uses a factorization technique to learn word representations 
from the co-occurrence matrix. The resulting word representations are able to capture both 
global and local information about words, and they are useful for a variety of NLP tasks.

In addition to GloVE, SWIVEL is another approach which leverages the co-occurrence 
matrix to learn word embeddings. SWIVEL stands for Skip-Window Vectors with Negative 
Sampling. Unlike GloVE, it uses local windows to learn the word vectors by taking into 
account the co-occurrence of words within a fixed window of its neighboring words. 
Furthermore, SWIVEL also considers unobserved co-occurrences and handles it using a 
special piecewise loss, boosting its performance with rare words. It is generally considered 
only slightly less accurate than GloVe on average, but is considerably faster to train. This is 
because it leverages distributed training by subdividing the Embedding vectors into smaller 
sub-matrices and executing matrix factorization in parallel on multiple machines. Snippet 2 
below demonstrates loading pre-trained word embeddings for both Word2Vec and GloVe and 
visualizing them in a 2D space, and computing nearest neighbors.

Word embeddings can be directly used in some downstream tasks like Named Entity 
Recognition (NER).
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from gensim.models import Word2Vec 
import gensim.downloader as api
import pprint
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import numpy as np
def tsne_plot(models, words, seed=23):
  "Creates a TSNE models & plots for multiple word models for the given words"

  plt.figure(figsize=(len(models)*30, len(models)*30))
  model_ix = 0
  for model in models:
    labels = []
    tokens = []

    for word in words:
      tokens.append(model[word])
      labels.append(word)

    tsne_model = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=seed) 
    new_values = tsne_model.fit_transform(np.array(tokens))
    x = []
    y = []
    for value in new_values:
      x.append(value[0])
      y.append(value[1])

    model_ix +=1
    plt.subplot(10, 10, model_ix)
    for i in range(len(x)):
      plt.scatter(x[i],y[i])
      plt.annotate(labels[i],
            xy=(x[i], y[i]),
            xytext=(5, 2),
            textcoords='offset points',
            ha='right',
            va='bottom')
  plt.tight_layout()
  plt.show()
v2w_model = api.load('word2vec-google-news-300')
glove_model = api.load('glove-twitter-25')
print("words most similar to 'computer' with word2vec and glove respectively:")
pprint.pprint( v2w_model.most_similar("computer")[:3])
pprint.pprint( glove_model.most_similar("computer")[:3]) 
pprint.pprint("2d projection of some common words of both models")
sample_common_words= list(set(v2w_model.index_to_key[100:10000]) 
                        & set(glove_model.index_to_key[100:10000]))[:100]
tsne_plot([v2w_model, glove_model], sample_common_words)

Snippet 2. Loading and plotting GloVe and Word2Vec embeddings in 2D
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Figure 5 Shows semantically similar words are clustered differently for the two algorithms

Figure 5. 2D visualization of pre-trained GloVe and Word2Vec word embeddings

Document embeddings

Embedding documents to low-dimensional dense embedding has attracted long-lasting 
interests since the 1980s. Document embeddings can be used in various applications, 
including semantic search, topic discovery, classification, and clustering to embed 
the meaning of a series of words in paragraphs and documents and use it for various 
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downstream applications. The evolution of the embeddings models can mainly be 
categorized into two stages: shallow Bag-of-words (BoW) models and deeper pretrained 
large language models.

Shallow BoW models

Early document embedding works follow the bag-of-words (BoW) paradigm, assuming a 
document is an unordered collection of words. These early works include latent semantic 
analysis (LSA)7 and latent dirichlet allocation (LDA).8 Latent semantic analysis (LSA) uses 
a co-occurrence matrix of words in documents and latent dirichlet allocation (LDA) uses a 
bayesian network to model the document embeddings. Another famous bag-of-words family 
of document embeddings is TF-IDF (term frequency-inverse document frequency) based 
models, which are statistical models that use the word frequency to represent the document 
embedding. TF-IDF-based models can either be a sparse embedding, which represents the 
term-level importance, or can be combined with word embeddings as a weighting factor to 
generate a dense embedding for the documents. For example, BM25, a TF-IDF-based bag-
of-words model, is still a strong baseline in today’s retrieval benchmarks.9

However,  the bag-of-words paradigm also has two major weaknesses: both the word 
ordering and the semantic meanings are ignored. BoW models fail to capture the sequential 
relationships between words, which are crucial for understanding meaning and context. 
Inspired by Word2Vec, Doc2Vec10 was proposed in 2014 for generating document 
embeddings using (shallow) neural networks. The Doc2Vec model adds an additional 
‘paragraph’ embedding or, in other words, document embedding in the model of Word2Vec 
as illustrated in Figure 6. The paragraph embedding is concatenated or averaged with other 
word embeddings to predict a random word in the paragraph. After training, for existing 
paragraphs or documents, the learned embeddings can be directly used in downstream 
tasks. For a new paragraph or document, extra inference steps need to be performed to 
generate the paragraph or document embedding.
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Figure 6. Doc2vec CBOW model

Snippet 3 below shows how you can train your own doc2Vec models on a custom corpus:

from gensim.test.utils import common_texts
from gensim.models.Doc2Vec import Doc2Vec, TaggedDocument
from gensim.test.utils import get_tmpfile
#train model on a sequence of documents tagged with their IDs
documents = [TaggedDocument(doc, [i]) for i, doc in enumerate(common_texts)]
model = Doc2Vec(documents, vector_size=8, window=3, min_count=1, workers=6)
# persist model to disk, and load it to infer on new documents
model_file = get_tmpfile("Doc2Vec_v1")
model.save(model_file)
model = Doc2Vec.load(model_file)  
model.infer_vector(["human", "interface"])

Snippet 3. Self-supervised Training and inference using Doc2Vec on private corpus
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The success of applying neural networks in the embedding world inspired an increasing 
interest in using deep neural networks to generate embeddings. 

Deeper pretrained large language models

Motivated by the development of deep neural networks, different embedding models and 
techniques were proposed, and the state-of-the-art models are refreshed frequently. Main 
changes of the models include: 

1.	 Using more complex learning models, especially bi-directional deep neural network 
models. 

2.	 The use of massive pre-training on unlabeled text. 

3.	 The use of a subword tokenizer. 

4.	 Using fine-tuning for various downstream NLP tasks. 

In 2018, BERT11 - which stands for bidirectional encoder representations from transformers - 
was proposed with groundbreaking results on 11 NLP tasks. Transformer, the model paradigm 
BERT based on, has become the mainstream model paradigm until today. Besides using a 
transformer as the model backbone, another key of BERT’s success is from pre-training with 
a massive unlabeled corpus. In pretraining, BERT utilized masked language model (MLM) as 
the pre-training objective. It did this by randomly masking some tokens of the input and using 
the masked token id as the prediction objective. This allows the model to utilize both the 
right and left context to pretrain a deep bidirectional transformer. BERT also utilizes the next 
sentence prediction task in pretraining. BERT outputs a contextualized embedding for every 
token in the input. Typically, the embedding of the first token (a special token named [CLS]) is 
used as the embedding for the whole input.



Embeddings & Vector Stores

19September 2024

Figure 7. The BERT architecture

BERT became the base model for multiple embedding models, including Sentence-
BERT,12 SimCSE,13 and E5.14 Meanwhile, the evolution of language models - especially large 
language models - never stops. T5 was proposed in 2019 with up to 11B parameters. PaLM 
was proposed in 2022 to push the large language model to a surprising 540B parameters. 
Models like Gemini from Google, GPT models from OpenAI and Llama models from Meta are 
also evolving to newer generations at astonishing speed. Please refer to the whitepaper on 
Foundational models for more information about some common LLMs.

New embedding models based on large language models have been proposed. For example, 
GTR and Sentence-T5 show better performance on retrieval and sentence similarity 
(respectively) than BERT family models.

Another approach to new embeddings models development is generating multi-vector 
embeddings instead of a single vector to enhance the representational power of the models. 
Embedding models in this family include ColBERT15 and XTR.16 
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Figure 8. An illustration of the taxonomy diagram of the embedding models

Although the deep neural network models require a lot more data and compute time to train, 
they have much better performance compared to models using bag-of-words paradigms. 
For example, for the same word the embeddings would be different with different contexts. 
Snippet 4 demonstrates how pre-trained document embedding models from Tensorflow-
hub17 (for example,Sentence t5)A and Vertex AIB can be used for training models with Keras 
and TF datasets. Vertex Generative AI text embeddings can be used with the Vertex AI SDK, 
Langchain, and Google’s BigQuery (Snippet 5) for embedding and advanced workflows.18

A. Note: not all models on https://tfhub.dev/ can be commercially used. Please check the licenses of the models 
and the training datasets and consult the legal team before commercial usage.	
B. Note: not all models on https://tfhub.dev/ can be commercially used. Please check the licenses of the models 
and the training datasets and consult the legal team before commercial usage.	
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import vertexai
from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel

# Set the model name. For multilingual: use "text-multilingual-embedding-002"
MODEL_NAME = "text-embedding-004"
# Set the task_type, text and optional title as the model inputs.
# Available task_types are "RETRIEVAL_QUERY", "RETRIEVAL_DOCUMENT", 
# "SEMANTIC_SIMILARITY", # "CLASSIFICATION", and "CLUSTERING"
TASK_TYPE = "RETRIEVAL_DOCUMENT" 
TITLE = "Google"
TEXT = "Embed text."

# Use Vertex LLM text embeddings
embeddings_vx = TextEmbeddingModel.from_pretrained("textembedding-gecko@004")

def LLM_embed(text):
    def embed_text(text):
        text_inp = TextEmbeddingInput(task_type="CLASSIFICATION",   text=text.numpy())
        return np.array(embeddings_vx.get_embeddings([text_inp])[0].values)
	 output = tf.py_function(func=embed_text, inp=[text], Tout=tf.float32)
	 output.set_shape((768,))
	 return output

# Embed strings using vertex LLMs
LLM_embeddings=train_data.map(lambda x,y: (LLM_embed(x), y))
# Embed strings in the tf.dataset using one of the tf hub models
embedding = "https://tfhub.dev/google/sentence-t5/st5-base/1"
hub_layer = hub.KerasLayer(embedding, input_shape=[],dtype=tf.string, trainable=True)
                          
# Train model 
model = tf.keras.Sequential()
model.add(hub_layer) # omit this layer if using Vertex LLM embeddings
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.Dense(1))
model.compile(optimizer='adam',loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
  metrics=['accuracy'])
history = model.fit(train_data.shuffle(100).batch(8))

Snippet 4. Creating & integrating text embeddings (Vertex, Tfhub) into keras text classification models
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SELECT * FROM ML.GENERATE_TEXT_EMBEDDING(
MODEL my_project.my_company.llm_embedding_model,
(
SELECT review as content
FROM bigquery-public-data.imdb.reviews));

Snippet 5. Creating LLM based text embeddings in BigQuery for selected columns in a table

Image & multimodal embeddings

Much like text, it’s also possible to create both image and multimodal embeddings. 

Unimodal image embeddings can be derived in many ways: one of which is by training a 
CNN or Vision Transformer model on a large scale image classification task (for example, 
Imagenet), and then using the penultimate layer as the image embedding. This layer has 
learnt some important discriminative feature maps for the training task. It contains a set of 
feature maps that are discriminative for the task at hand and can be extended to other tasks 
as well. 

To obtain multimodal embeddings19 you take the individual unimodal text and image 
embeddings and their semantic relationships learnt via another training process. This 
gives you a fixed size semantic representation in the same latent space. The below snippet 
(Snippet 6) can be used to compute image and multimodal embeddings for images and text 
and be used with a keras model directly (much like the text embedding example).
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import base64
import tensorflow as tf
from google.cloud import aiplatform
from google.protobuf import struct_pb2

#fine-tunable layer for image embeddings which can be used for downstream keras modelimage_
embed=hub.KerasLayer("https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/feature_
vector/2",trainable=False) 

class EmbeddingPredictionClient:
  """Wrapper around Prediction Service Client."""
  def __init__(self, project : str,
    location : str = "us-central1",
    api_regional_endpoint: str = "us-central1-aiplatform.googleapis.com"):
    client_options = {"api_endpoint": api_regional_endpoint}
    self.client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)  
    self.location = location
    self.project = project

  def get_embedding(self, text : str = None, gs_image_path : str = None):
   #load the image from a bucket in google cloud storage
   with tf.io.gfile.GFile(gs_image_path, "rb") as f:
     image_bytes = f.read()
   if not text and not image_bytes:
    raise ValueError('At least one of text or image_bytes must be specified.')
   #Initialize a protobuf data struct with the text and image inputs 
   instance = struct_pb2.Struct()
    if text:
      instance.fields['text'].string_value = text
      if image_bytes:
      encoded_content = base64.b64encode(image_bytes).decode("utf-8")
      image_struct = instance.fields['image'].struct_value
      image_struct.fields['bytesBase64Encoded'].string_value = .string_value = encoded_content

     #Make predictions using the multimodal embedding model
     instances = [instance]
     endpoint = (f"projects/{self.project}/locations/{self.location}"
         "/publishers/google/models/multimodalembedding@001")
     response = self.client.predict(endpoint=endpoint, instances=instances)

     text_embedding = None
     if text:    
      text_emb_value = response.predictions[0]['textEmbedding']
      text_embedding = [v for v in text_emb_value]

     image_embedding = None
     if image_bytes:    
      image_emb_value = response.predictions[0]['imageEmbedding']
      image_embedding = [v for v in image_emb_value]

Continues next page...
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 return EmbeddingResponse (text_embedding=text_embedding, image_embedding=image_embedding)
#compute multimodal embeddings for text and images
client.get_embedding(text="sample_test", gs_image_path="gs://bucket_name../image_filename..")

Snippet 6. Using Vertex API to create Multimodal embeddings Graph embeddings

Structured data embeddings

There are two common ways to generate embeddings for structured data, one is more 
general while the other is more tailored for recommendation applications. 

Unlike unstructured data, where a pre-trained embedding model is typically available, we 
have to create the embedding model for the structured data since it would be specific to 
a particular application.

General structured data

Given a general structured data table, we can create embedding for each row. This can be 
done by the ML models in the dimensionality reduction category, such as the PCA model.

One use case for these embeddings are for anomaly detection. For example, we can create 
embeddings for anomaly detection using large data sets of labeled sensor information 
that identify anomalous occurrences.20 Another case use is to feed these embeddings 
to downstream ML tasks such as classification. Compared to using the original high-
dimensional data, using embeddings to train a supervised model requires less data. This is 
particularly important in cases where training data is not sufficient.
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User/item structured data

The input is no longer a general structured data table as above. Instead, the input includes 
the user data, item/product data plus the data describing the interaction between user and 
item/product, such as rating score. 

This category is for recommendation purposes, as it maps two sets of data (user dataset, 
item/product/etc dataset) into the same embedding space. For recommender systems, we 
can create embeddings out of structured data that correlate to different entities such as 
products, articles, etc. Again, we have to create our own embedding model. Sometimes this 
can be combined with unstructured embedding methods when images or text descriptions 
are found.

Graph embeddings

Graph embeddings are another embedding technique that lets you represent not 
only information about a specific object but also its neighbors (namely, their graph 
representation). Take an example of a social network where each person is a node, and the 
connections between people are defined as edges. Using graph embedding you can model 
each node as an embedding, such that the embedding captures not only the semantic 
information about the person itself, but also its relations and associations hence enriching 
the embedding. For example, if two nodes are connected by an edge, the vectors for those 
nodes would be similar. You might then be able to predict who the person is most similar 
to and recommend new connections. Graph embeddings can also be used for a variety of 
tasks, including node classification, graph classification, link prediction, clustering, search, 
recommendation systems, and more. Popular algorithms21,22 for graph embedding include 
DeepWalk, Node2vec, LINE, and GraphSAGE.23 
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Training Embeddings

Current embedding models usually use dual encoder (two tower) architecture. For example, 
for the text embedding model used in question-answering, one tower is used to encode 
the queries and the other tower is used to encode the documents. For the image and text 
embedding model, one tower is used to encode the images and the other tower is used 
to encode the text. The model can have various sub architectures, depending on how the 
model components are shared between the two towers. The following figure shows some 
architectures of the dual encoders.24 

Figure 9. Some architectures of dual encoders

The loss used in embedding models training is usually a variation of contrastive loss, which 
takes a tuple of <inputs, positive targets, [optional] negative targets> as the inputs. Training 
with contrastive loss brings positive examples closer and negative examples far apart.

Similar to foundation model training, training of an embedding model from scratch usually 
includes two stages: pretraining (unsupervised learning) and fine tuning (supervised 
learning). Nowadays, the embedding models are usually directly initialized from foundation 
models such as BERT, T5, GPT, Gemini, CoCa. You can use these base models to leverage the 
massive knowledge that has been learned from the large-scale pretraining of the foundation 
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models. The fine-tuning of the embedding models can have one or more phases. The fine-
tuning datasets can be created in various methods, including human labeling, synthetic 
dataset generation, model distillation, and hard negative mining.

To use embeddings for downstream tasks like classification or named entity recognition, 
extra layers (for example, softmax classification layer) can be added on top of the embedding 
models. The embedding model can either be frozen (especially when the training dataset is 
small), trained from scratch, or fine-tuned together with the downstream tasks. 

Vertex AI provides the ability to customize the Vertex AI text embedding models.25 Users can 
also choose to fine-tune the models directly. See26 for an example of fine tuning the BERT 
model using tensorflow model garden. You can also directly load the embedding models from 
tfhub and fine-tune on top of the model. Snippet 7 shows an example how to build a classifier 
based on tfhub models. 

# Can switch the embedding to different embeddings from different modalities on # 
tfhub. Here we use the BERT model as an example.
tfhub_link = "https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4"

class Classifier(tf.keras.Model):
    def __init__(self, num_classes):
      super(Classifier, self).__init__(name="prediction")
      	 self.encoder = hub.KerasLayer(tfhub_link, trainable=True)
      self.dropout = tf.keras.layers.Dropout(0.1)
      self.dense = tf.keras.layers.Dense(num_classes)

    def call(self, preprocessed_text):
      encoder_outputs = self.encoder(preprocessed_text)
      pooled_output = encoder_outputs["pooled_output"]
   x = self.dropout(pooled_output)
   x = self.dense(x)
   return x

Snippet 7. Creating a Keras model using trainable tfhub layer
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So far you’ve seen the various types of embeddings, techniques and best practices to train 
them for various data modalities, and some of their applications. The next section discusses 
how to persist and search the embeddings that have been created in a fast and scalable way 
for production workloads.

Vector search
Full-text keyword search has been the lynchpin of modern IT systems for years. Full-text 
search engines and databases (relational and non-relational) often rely on explicit keyword 
matching. For example, if you search for ‘cappuccino’ the search engine or database returns 
all documents that mention the exact query in the tags or text description. However, if the 
key word is misspelled or described with a differently worded text, a traditional keyword 
search returns incorrect or no results. There are traditional approaches which are tolerant of 
misspellings and other typographical errors. However, they are still unable to find the results 
having the closest underlying semantic meanings to the query. This is where vector search is 
very powerful: it uses the vector or embedded semantic representation of documents.

Vector search lets you to go beyond searching for exact query literals and allows you to 
search for the meaning across various data modalities. This provides you more nuanced 
results. After you have a function that can compute embeddings of various items,  you 
compute the embedding of the items of interest and store this embedding in a database. 
You then embed the incoming query in the same vector space as the items. Next, you have 
to find the best matches to the query. This process is analogous to finding the most ‘similar’ 
matches across the entire collection of searchable vectors: similarity between vectors can be 
computed using a metric such as euclidean distance, cosine similarity, or dot product.
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Figure 10. Visualization of how different metrics compute vector similarity

Euclidean distance (i.e., L2 distance) is a geometric measure of the distance between two 
points in a vector space. This works well for lower dimensions. Cosine similarity is a measure 
of the angle between two vectors. And inner/dot product, is the projection of one vector 
onto another. They are equivalent when the vector norms are 1. This seems to work better 
for higher dimensional data. Vector databases store and help manage and operationalize the 
complexity of vector search at scale, while also addressing the common database needs.

Important vector search algorithms

The most straightforward way to find the most similar match is to run a traditional linear 
search by comparing the query vector with each document vector and return the one with 
the highest similarity. However, the runtime of this approach scales linearly (O(N)) with the 
amount of documents or items to search. This approach is unacceptably slow for most use 
cases involving several millions of documents or more. Using approximate nearest neighbour 
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(ANN) search for that purpose is more practical.  ANN is a technique for finding the closest 
points to a given point in a dataset with a small margin of error - but with a tremendous boost 
in performance. There are many approaches with varying trade-offs across scale, indexing 
time, performance, simplicity and more.27 They use one or more implementations of the 
following techniques: quantization, hashing, clustering and trees, among others. Some of the 
most popular approaches are discussed below.

Locality sensitive hashing & trees

Locality sensitive hashing (LSH) 28 is a technique for finding similar items in a large dataset. 
It does this by creating one or more hash functions that map similar items to the same hash 
bucket with high probability. This means that you can quickly find all of the similar items to 
a given item by only looking at the candidate items in the same hash bucket (or adjacent 
buckets) and do a linear search amongst those candidate pairs. This allows for significantly 
faster lookups within a specific radius. The number of hash functions/tables and buckets 
determine the search recall/speed tradeoff, as well as the false positive / true positive one. 
Having too many hash functions might cause similar items to different buckets, while too few 
might result in too many items falsely being hashed to the same bucket and the number of 
linear searches to increase.

Another intuitive way to think about LSH is grouping residences by their postal code or 
neighborhood name. Then based on where someone chooses to move you look at the 
residences for only that neighborhood and find the closest match.
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Figure 11. Visualization of how LSH uses random hyperplanes to partition the vector space

Tree-based algorithms work similarly. For example, the Kd-tree approach works by creating 
the decision boundaries by computing the median of the values of the first dimension, then 
that of the second dimension and so on. This approach is very much like a decision tree. 
Naturally this can be ineffective if searchable vectors are high dimensional. In that case, the 
Ball-tree algorithm is better suited. It is similar in functionality, except instead of going by 
dimension-wise medians it creates buckets based on the radial distance of the data points 
from the center. Here is an example of the implementation of these three approaches:
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from sklearn.neighbors import NearestNeighbors
from vertexai.language_models import TextEmbeddingModel
from lshashing import LSHRandom
import numpy as np

model = TextEmbeddingModel.from_pretrained("textembedding-gecko@004")
test_items= [
  "The earth is spherical.",
  "The earth is a planet.",
  "I like to eat at a restaurant."]
query = "the shape of earth"
embedded_test_items = np.array([embedding.values for embedding in model.get_embeddings(test_items)])
embedded_query = np.array(model.get_embeddings([query])[0].values)

#Naive brute force search
n_neighbors=2
nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='brute').fit(embedded_test_items) 
naive_distances, naive_indices = nbrs.kneighbors(np.expand_dims(embedded_query, axis = 0))

#algorithm- ball_tree due to high dimensional vectors or kd_tree otherwise
nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree').fit(embedded_test_items) 
distances, indices = nbrs.kneighbors(np.expand_dims(embedded_query, axis = 0))

#LSH
lsh_random_parallel = LSHRandom(embedded_test_items, 4, parallel = True)
lsh_random_parallel.knn_search(embedded_test_items, embedded_query, n_neighbors, 3, parallel = True)

#output for all 3 indices = [0, 1] , distances [0.66840428, 0.71048843] for the first 2 neighbours
#ANN retrieved the same ranking of items as brute force in a much scalable manner

Snippet 8. Using scikit-learn29 and lshashing30 for ANN with LSH, KD/Ball-tree and linear search

Hashing and tree-based approaches can also be combined and extended upon to obtain 
the optimal tradeoff between recall and latency for search algorithms. FAISS with HNSW and 
ScaNN are good examples.



Embeddings & Vector Stores

33September 2024

Hierarchical navigable small worlds 

Figure 12. Diagram showing how HNSW ‘zooms in’ to perform ANN

One of the FAISS (Facebook AI similarity search) implementations leverages the concept 
of hierarchical navigable small world (HNSW) 31 to perform vector similarity search in sub-
linear (O(Logn)) runtime with a good degree of accuracy. A HNSW is a proximity graph with a 
hierarchical structure where the graph links are spread across different layers. The top layer 
has the longest links and the bottom layer has the shortest ones. As shown in Figure 9, the 
search starts at the topmost layer where the algorithm greedily traverses the graph to find 
the vertex most semantically similar to the query. Once the local minimum for that layer is 
found, it then switches to the graph for the closest vertex on the layer below. This process 
continues iteratively until the local minimum for the lowest layer is found, with the algorithm 
keeping track of all the vertices traversed to return the K-nearest neighbors. This algorithm 
can be optionally augmented with quantization and vector indexing to boost speed and 
memory efficiency.
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import faiss
M=32 #creating high degree graph:higher recall for larger index & searching time
d=768 # dimensions of the vectors/embeddings
index = faiss.IndexHNSWFlat(d, M)
index.add(embedded_test_items) #build the index using the embeddings in Snippet 9
#execute the ANN search
index.search(np.expand_dims(embedded_query, axis=0), k=2)

Snippet 9. Indexing and executing ANN search with the FAISS library using HNSW

ScaNN

Google developed the scalable approximate nearest neighbor (ScaNN)32,33 approach which is 
used across a lot of its products and services. This includes being externally available to all 
customers of Google Cloud through the Vertex AI Vector Search. Below is how ScaNN uses 
a variety of steps to perform efficient vector search, with each one of them having their own 
subset of parameters. 

The first step is the optional partitioning step during training: it uses one of the multiple 
algorithms available to partition the vector store into logical partitions/clusters where 
the semantically related are grouped together. The partitioning step is optional for small 
datasets. However, for larger datasets with >100k embedding vectors, the partitioning step 
is crucial since by pruning the search space it cuts down the search space by magnitudes 
therefore significantly speeds up the query. The space pruning is configured through the 
number of partitions and the number of partitions to search. A larger number leads to better 
recall but larger partition creation time. A good heuristic is to set the number of partitions to 
be the square root of the number of vectors.
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Figure 13. Search space partitioning & pruning(left) & Approximate scoring (right)

At query time ScaNN uses the user-specified distance measure to select the specified 
number of top partitions (a value specified by the user), and then executes the scoring 
step next. In this step ScaNN compares the query with all the points in the top partitions 
and selects the top K’. This distance computation can be configured as exact distance or 
approximate distance. The approximate distance computation leverages either standard 
product quantization or anisotropic quantization techniques, the latter of which is a specific 
method employed by ScaNN which gives the better speed and accuracy tradeoffs.

Finally, as a last step the user can optionally choose to rescore the user specified top K 
number of results more accurately. This results in an industry leading speed/accuracy 
tradeoff ScaNN is known for as can be inferred from Figure 14. Snippet 10 shows a 
code example.
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Figure 14. Accuracy/speed tradeoffs for various SOTA ANN search algorithms

import tensorflow as tf
import tensorflow_recommenders as tfrs
from vertexai.language_models import TextEmbeddingModel, TextEmbeddingInput

# Embed documents & query(from snip 9.) and convert them to tensors and tf.datasets
embedded_query = tf.constant((LM_embed(query, "RETRIEVAL_QUERY")))
embedded_docs = [LM_embed(doc, "RETIREVAL_DOCUMENT") for doc in searchable_docs]
embedded_docs = tf.data.Dataset.from_tensor_slices(embedded_docs).enumerate().batch(1)

# Build index from tensorflow dataset and execute ANN search based on dot product metric
scann = tfrs.layers.factorized_top_k.ScaNN( 
  distance_measure= 'dot_product',
  num_leaves = 4, #increase for higher number of partitions / latency for increased recall
  num_leaves_to_search= 2) # increase for higher recall but increased latency
scann = scann.index_from_dataset(embedded_docs)
scann(embedded_query, k=2)
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Snippet 10. Using Tensorflow Recommenders34 to perform ANN search using the ScaNN algorithm

In this whitepaper we have seen both State-of-the-Art SOTA and traditional ANN search 
algorithms: ScaNN, FAISS , LSH, KD-Tree, and Ball-tree, and examined the  great speed/
accuracy tradeoffs that they provide. However, to use these algorithms they need to 
be deployed in a scalable, secure and production-ready manner. For that we need 
vector databases.

Vector databases 
Vector embeddings embody semantic meanings of data, while vector search algorithms 
provide a means for efficiently querying them. Historically traditional databases lacked the 
means to combine semantic meaning and efficient querying  in a way that the most relevant 
embeddings can be both stored, queried, and retrieved in a secure, scalable, and flexible 
manner for complex analysis and real-time enterprise grade applications. This is what 
gave rise to vector databases, which are built ground-up to manage these embeddings for 
production scenarios. Due to the recent popularity of Generative AI, an increasing number 
of traditional databases are starting to incorporate supporting vector search functionality 
as well in addition to traditional search (‘hybrid search’) functionalities. Let’s look at the 
workflow for a simple Vector Database, with hybrid search capabilities.
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Figure 15. Populating and querying vector databases

Each vector database differs in its implementation, but the general flow is shown in Figure 15:

1.	 An appropriate trained embedding model is used to embed the relevant data points as 
vectors with fixed dimensions. 

2.	 The vectors are then augmented with appropriate metadata and complementary 
information (such as tags) and indexed using the specified algorithm for efficient search.

3.	 An incoming query gets embedded with the same model, and used to query and return  
specific amounts of the most semantically similar items and their associated unembedded 
content/metadata. Some databases might provide caching and pre-filtering (based on 
tags) and post-filtering capabilities (reranking using another more accurate model) to 
further enhance the query speed and performance.

There are quite a few vector databases available today, each tailored to different business 
needs and considerations. A few good examples of commercially managed vector databases 
include Google Cloud’s Vertex Vector Search,35 Google Cloud’s AlloyDB & Cloud SQL 
Postgres ElasticSearch,36 and Pinecone37 to name a few. Vertex AI Vector Search is a vector 
database built by Google that uses the ScaNN algorithm for fast vector search, while still 
maintaining all the security and access guarantees of Google Cloud. AlloyDB & Cloud SQL 
Postgres supports vector search through the OSS pgvector38 extension, which allows for 
SQL queries to combine ANN search with traditional predicates and the usual transactional 
semantics for ANN search index. AlloyDB also has a ScaNN index extension that is a native 
implementation of ScaNN and is pgvector-compatible. Similarly, many of the other traditional 
databases have also started to add plugins to enable vector search. Pinecone and Weaviate 
leverage HNSW for their fast vector search in addition to the ability to filter data using 
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traditional search. Amongst their open source peers: Weaviate39 and ChromaDB40 provide a 
full suite of functionality upon deployment and can be tested in memory as well during the 
prototyping phase.

Operational considerations

Vector Databases are critical to managing the majority of technical challenges that arise 
with storing and querying embeddings at scale. Some of these challenges are specific to the 
nature of vector stores, while others overlap with that of traditional databases. These include 
horizontal and vertical scalability, availability, data consistency, real time updates, backups, 
access control, compliance, and much more. However, there are also many more challenges 
and considerations you need to take into account while using embedding and vector stores.

Firstly, embeddings, unlike traditional content, can mutate over time. This means that the 
same text, image, video or other content could and should be embedded using different 
embedding models to optimize for the performance of the downstream applications. This is 
especially true for embeddings of supervised models after the model is retrained to account 
for various drifts or changing objectives. Similarly, the same applies to unsupervised models 
when they are updated to a newer model. However, frequently updating the embeddings 
- especially those trained on large amounts of data - can be prohibitively expensive. 
Consequently, a balance needs to be struck. This necessitates a well-defined automated 
process to store, manage, and possibly purge embeddings from the vector databases taking 
the budget into consideration.
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Secondly, while embeddings are great at representing semantic information, sometimes they 
can be suboptimal at representing literal or syntactic information. This is especially true for 
domain-specific words or IDs. These values are potentially missing or underrepresented 
in the data the embeddings models were trained on. For example, if a user enters a query 
that contains the ID of a specific number along with a lot of text, the model might find 
semantically similar neighbors which match the meaning of the text closely, but not the ID, 
which is the most important component in this context. You can overcome this challenge by 
using a combination of full-text search to pre-filter or post-filter the search space before 
passing it onto the semantic search module.

Another important point to consider is that depending on the nature of the workload in which 
the semantic query occurs, it might be worth relying on different vector databases. For 
example, for OLTP workloads that require frequent reads/write operations, an operational 
database like Postgres or CloudSQL is the best choice. For large-scale OLAP analytical 
workloads and batch use cases, using Bigquery’s vector search is preferable.

In conclusion, a variety of factors need to be considered when choosing a vector database. 
These factors include size and type of your dataset (some are good at sparse and others 
dense), business needs, the nature of the workload,  budget, security, privacy guarantees, 
the needs for semantic and syntactic search as well as the database systems that are already 
in use. In this section we have seen the various ANN search approaches as well the need and 
benefits of vector databases. The next section demonstrates an example of using a Vector AI 
Vector Search for semantic search.

Applications
Embeddings models are one of the fundamental machine learning models that power a 
variety of applications. We summarize some popular applications in the following table. 
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Task Description

Retrieval

Given a query and a set of objects (for example, documents, images, 
and videos), retrieve the most relevant objects. Based on the definition 
of relevant objects, the subtasks include question answering and 
recommendations.

Semantic text similarity
Determine whether two sentences have the same semantic meaning. 
The subtasks include: paraphrasing, duplicate detection, and bitext 
mining.

Classification
Classify objects into possible categories. Based on the number of labels, 
the subtasks include binary classification, multi-class classification, and 
multilabel classifications.

Clustering Cluster objects together.

Reranking Rerank a set of objects based on a certain query.
 

Embeddings together with vector stores providing ANN can be powerful tools which can be 
used for a variety of applications. These include Retrieval augmented Generation for LLMs, 
Search, Recommendation Systems, Anomaly detection, few shot- classification and much 
more. 

For ranking problems like search and recommendations, embeddings are normally used 
at the first stage of the process. They retrieve the potentially good candidates that are 
semantically similar and consequently improve the relevance of search results. Since the 
amount of information to sort through can be quite large (in some cases even millions or 
billions) ANN techniques like ScaNN greatly aids in scalably narrowing the search space. 

Let’s look at an application which combines both LLMs and RAG to help answer questions.
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Q & A with sources (retrieval augmented generation)

Retrieval augmented generation (RAG) for Q&A is a technique that combines the best of both 
worlds from retrieval and generation. It first retrieves relevant documents from a knowledge 
base and then uses prompt expansion to generate an answer from those documents. Prompt 
expansion is a technique that when combined with database search can be very powerful. 
With prompt expansion the model retrieves relevant information from the database (mostly 
using a combination of semantic search and business rules), and augments the original 
prompt with it. The model uses this augmented prompt to generate much more interesting, 
factual, and informative content than with retrieval or generation alone.

RAGs can help with a common problem with LLMs: their tendency to ‘hallucinate’ and 
generate factually incorrect but plausible sounding responses. Although RAG can reduce 
hallucinations, it does not completely eliminate them. What can help mitigate this problem 
further is to also return the sources from the retrieval and do a quick coherence check either 
by a human or an LLM. This ensures the LLM response is consistent with the semantically 
relevant sources. Let’s look at an example (Snippet 11 and 12) of RAG with sources, which can 
be scalably implemented using Vertex AI LLM text embeddings and Vertex AI Vector Search 
in conjunction with libraries like langchain.41 We start with the initial setup in Snippet 11.
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# Before you start run this command:
# pip install --upgrade --user --quiet google-cloud-aiplatform langchain_google_vertexai
# after running pip install make sure you restart your kernel

# TODO : Set values as per your requirements
# Project and Storage Constants
PROJECT_ID = "<my_project_id>"
REGION = "<my_region>"
BUCKET = "<my_gcs_bucket>"
BUCKET_URI = f"gs://{BUCKET}"

# The number of dimensions for the textembedding-gecko@004 is 768
# If other embedder is used, the dimensions would probably need to change.
DIMENSIONS = 768

# Index Constants
DISPLAY_NAME = "<my_matching_engine_index_id>"
DEPLOYED_INDEX_ID = "yourname01" # you set this. Start with a letter.

from google.cloud import aiplatform
from langchain_google_vertexai import VertexAIEmbeddings

aiplatform.init(project=PROJECT_ID, location=REGION, staging_bucket=BUCKET_URI)
embedding_model = VertexAIEmbeddings(model_name="textembedding-gecko@003")

# NOTE : This operation can take upto 30 seconds
my_index = aiplatform.MatchingEngineIndex.create_tree_ah_index(
    display_name=DISPLAY_NAME,
    dimensions=DIMENSIONS,
    approximate_neighbors_count=150,
    distance_measure_type="DOT_PRODUCT_DISTANCE",
    index_update_method="STREAM_UPDATE",  # allowed values BATCH_UPDATE , STREAM_UPDATE
)

# Create an endpoint
my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(
    display_name=f"{DISPLAY_NAME}-endpoint", public_endpoint_enabled=True
)

# NOTE : This operation can take upto 20 minutes
my_index_endpoint = my_index_endpoint.deploy_index(
    index=my_index, deployed_index_id=DEPLOYED_INDEX_ID
)

Continues next page...
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Snippet 11. Setting up the network and environment

my_index_endpoint.deployed_indexes

# TODO : replace 1234567890123456789 with your acutial index ID
my_index = aiplatform.MatchingEngineIndex("1234567890123456789")

# TODO : replace 1234567890123456789 with your acutial endpoint ID
# Be aware that the Index ID differs from the endpoint ID
my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint("1234567890123456789")

from langchain_google_vertexai import (
    VectorSearchVectorStore,
    VectorSearchVectorStoreDatastore,
)

# Input texts
texts = [
    "The cat sat on",
    "the mat.",
    "I like to",
    "eat pizza for",
    "dinner.",
    "The sun sets",
    "in the west.",
]

# Create a Vector Store
vector_store = VectorSearchVectorStore.from_components(
    project_id=PROJECT_ID,
    region=REGION,
    gcs_bucket_name=BUCKET,
    index_id=my_index.name,
    endpoint_id=my_index_endpoint.name,
    embedding=embedding_model,
    stream_update=True,
)

# Add vectors and mapped text chunks to your vectore store
vector_store.add_texts(texts=texts)

# Initialize the vectore_store as retriever
retriever = vector_store.as_retriever()

# perform simple similarity search on retriever
retriever.invoke("What are my options in breathable fabric?")
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Then we setup and initialize the Vector AI Vector Searc engine ANN index using Vertex text 
embeddings and then use the Vertex LLMs to do prompt expansion using semantic search. 
This both grounds the LLMs in factuality and provides sources as well (Snippet 13).

# Create dummy embeddings to initialize the vector store
embeddings_vx = VertexAIEmbeddings()
initial_config = {
  "id": str(uuid.uuid4()),
  "embedding": [float(x) for x in list(embeddings_vx.embed_documents(test_items)[0])], 
}

with open("data.json", "w") as f:
  json.dump(initial_config, f)
#magic command to be run on terminal or jupyter notebooks
!gsutil cp data.json {EMBEDDING_DIR}/file.json
# Create dummy embeddings to initialize the vector store
aiplatform.init(project=PROJECT_ID, location=REGION, staging_bucket=BUCKET_URI)
my_index = aiplatform.MatchingEngineIndex.create_tree_ah_index(
  display_name=DISPLAY_NAME,
  contents_delta_uri=EMBEDDING_DIR,
  dimensions=DIMENSIONS,
  leafNodeEmbeddingCount=1000,
  fractionLeafNodesToSearch=0.1,
  approximate_neighbors_count=2,
  distance_measure_type="DOT_PRODUCT_DISTANCE")

my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(
  display_name=f"{DISPLAY_NAME}-endpoint",
  network=VPC_NETWORK_FULL)
my_index_endpoint = my_index_endpoint.deploy_index(
  index=my_index, deployed_index_id=DEPLOYED_INDEX_ID
) 

#initialize Langchain retriever and add text embeddings to index
texts = [
 "The earth is spherical.",
 "The earth is a planet.",
 "I like to eat at a restaurant.",
]
vector_store = MatchingEngine.from_components(
  project_id=PROJECT_ID,
  region=REGION,

Continues next page...
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  gcs_bucket_name=BUCKET_URI,
  index_id=my_index.name,
  endpoint_id=my_index_endpoint.name,
  embedding=embeddings_vx
)
vector_store.add_texts(texts=texts)
retriever=vector_store.as_retriever(search_kwargs={'k':1 })

#Create Retrieval augmented few-shot prompts to provide context to ground LLMs
prompt_template="""You are David, an AI knowledge bot. 
Answer the questions using the facts provided. Use the following pieces of context to answer 
the users question
If you don't know the answer, just say that "I don't know", don't try to make up an answer.
{summaries}"""

messages = [
    SystemMessagePromptTemplate.from_template(prompt_template),
    HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)

chain_type_kwargs = {"prompt": prompt}
llm = VertexAI() 
#build your chain for RAG+C
chain= RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", 
retriever=retriever, return_source_documents=True)
#print your results with Markup language
def print_result(result):
  output_text = f"""### Question: 
  {query}
  ### Answer: 
  {result['result']}
  ### Source: 
  {' '.join(list(set([doc.page_content for doc in result['source_documents']])))}
  """
  return(output_text)
query = "What shape is the planet where humans live?"
result = chain(query)
display(Markdown(print_result(result)))

Snippet 12. Build/deploy ANN Index for Vertex Matching engine and use RAG with LLM prompts to generate 
grounded results/sources
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Figure 16. Model responses along with sources demonstrating the LLM being grounded in the database

As we can infer from Figure 16, the output not only grounds LLM in the semantically similar 
results retrieved from the database (hence refusing to answer when context cannot be found 
in the database). This not only significantly reduces hallucination, but also provides sources 
for verification, either human or using another LLM.

Summary
In this whitepaper we have discussed various methods to create, manage, store, and retrieve 
embeddings of various data modalities effectively in the context of production-grade 
applications. Creating, maintaining and using embeddings for downstream applications can 
be a complex task that involves several roles in the organization. However, by thoroughly 
operationalizing and automating its usage, you can safely leverage the incredible benefits 
they offer across some of the most important applications. Some key takeaways from this 
whitepaper include:

1.	 Choose your embedding model wisely for your data and use case. Ensure the data used in 
inference is consistent with the data used in training. The distribution shift from training to 
inference can come from various areas, including domain distribution shift or downstream 
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task distribution shift. If no existing embedding models fit the current inference data 
distribution, fine-tuning the existing model can significantly help on the performance. 
Another tradeoff comes from the model size. The large deep neural network (large 
multimodal models) based models usually have better performance but can come with a 
cost of longer serving latency. Using Cloud-based embedding services can conquer the 
above issue by providing both high-quality and low-latency embedding service. For most 
business applications using a pre-trained embedding model provides a good baseline, 
which can be further fine-tuned or integrated in downstream models. In case the data has 
an inherent graph structure, graph embeddings can provide superior performance.

2.	 Once your embedding strategy is defined, it’s important to make the choice of the 
appropriate vector database that suits your budget and business needs. It might seem 
quicker to prototype with available open source alternatives, but opting for a more secure, 
scalable, and battle-tested managed vector database is certain to be better off in the long 
term. There are various open source alternatives using one of the many powerful ANN 
vector search algorithms, but ScaNN and HNSW have proven to provide some of the best 
accuracy and performance trade offs in that order.

3.	 Embeddings combined with an appropriate ANN powered vector database is an 
incredibly powerful tool and can be leveraged for various applications, including 
Search, Recommendation systems, and Retrieval augment generation for LLMs. This 
approach can mitigate the hallucination problem and bolster verifiability and trust of 
LLM-based systems.
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