
Foundational 
Large Language 
Models & 
Text Generation
Authors: Mohammadamin Barektain,  
Anant Nawalgaria, Daniel J. Mankowitz,  
Majd Al Merey, Yaniv Leviathan, Massimo Mascaro,  
Matan Kalman, Elena Buchatskaya,                                     
Aliaksei Severyn, and Antonio Gulli



Foundational Large Language Models & Text Generation

2September 2024

Acknowledgements

Reviewers and Contributors

Adam Sadvovsky

Yonghui Wu

Andrew Dai

Efi Kokiopolou

Chuck Sugnet

Aleksey Vlasenko

Erwin Huizenga

Curators and Editors

Antonio Gulli

Anant Nawalgaria

Grace Mollison 

Technical Writer

Mark Iverson

Designer

Michael Lanning 



Introduction� 6

Why language models are important� 7

Large language models� 8

	 Transformer� 9

		  Input preparation and embedding	 11

		  Multi-head attention	 12

			   Understanding self-attention	 12

			   Multi-head attention: power in diversity	 14

		  Layer normalization and residual connections	 15

		  Feedforward layer 	 15

		  Encoder and decoder	 16

		  Training the transformer	 17

			   Data preparation	 17

			   Training and loss function	 18

The evolution of transformers� 19

	 GPT-1� 19

	 BERT� 21

	 GPT-2� 22

Table of contents



	 GPT-3/3.5/4� 23

	 LaMDA� 24

	 Gopher� 25

	 GLaM� 26

	 Chinchilla� 27

	 PaLM� 28

		  PaLM 2	 29

	 Gemini� 29

	 Other open models� 32

	 Comparison� 34

Fine-tuning large language models� 37

	 Supervised fine-tuning 	 38

	 Reinforcement learning from human feedback	 39

	 Parameter Efficient Fine-Tuning	 41

Using large language models� 44

	 Prompt engineering � 44

	 Sampling Techniques and Parameters� 45

Accelerating inference� 46

	 Trade offs� 47

		  The Quality vs Latency/Cost Tradeoff	 48

		  The Latency vs Cost Tradeoff	 48

	 Output-approximating methods� 49

		  Quantization	 49



		  Distillation	 50

	 Output-preserving methods	 52

		  Flash Attention	 52

		  Prefix Caching� 53

		  Speculative Decoding	 55

	 Batching and Parallelization	 57

Applications� 58

	 Code and mathematics� 61

	 Machine translation� 62

	 Text summarization� 63

	 Question-answering� 63

	 Chatbots� 64

	 Content generation� 65

	 Natural language inference� 65

	 Text classification� 66

	 Text analysis� 67

	 Multimodal applications� 68

Summary� 69

Endnotes� 71



Foundational Large Language Models & Text Generation

6September 2024

Introduction
The advent of Large Language Models (LLMs) represents a seismic shift in the world of 
artificial intelligence. Their ability to process, generate, and understand user intent is 
fundamentally changing the way we interact with information and technology. 

An LLM is an advanced artificial intelligence system that specializes in processing, 
understanding, and generating human-like text. These systems are typically implemented as 
a deep neural network and are trained on massive amounts of text data. This allows them to 
learn the intricate patterns of language, giving them the ability to perform a variety of tasks, 
like machine translation, creative text generation, question answering, text summarization, 
and many more reasoning and language oriented tasks. This whitepaper dives into the 
timeline of the various architectures and approaches building up to the large language 
models and the architectures being used at the time of publication. It also discusses fine-

We believe that this new crop of 
technologies has the potential to 
assist, complement, empower, 
and inspire people at any time 
across almost any field.



Foundational Large Language Models & Text Generation

7September 2024

tuning techniques to customize an LLM to a certain domain or task, methods to make the 
training more efficient, as well as methods to accelerate inference. These are then followed 
by various applications and code examples. 

Why language models are important
LLMs achieve an impressive performance boost from the previous state of the art across 
a variety of different and complex tasks which require answering questions or complex 
reasoning, making feasible many new applications. These include language translation, code 
generation and completion, text generation, text classification, and question-answering, 
to name a few. Although foundational LLMs trained in a variety of tasks on large amounts 
of data perform very well out of the box and display emergent behaviors (e.g. the ability to 
perform tasks they have not been directly trained for) they can also be adapted to solve 
specific tasks where performance out of the box is not at the level desired through a process 
known as fine-tuning. This requires significantly less data and computational resources than 
training an LLM from scratch. LLMs can be further nudged and guided towards the desired 
behavior by the discipline of prompt engineering: the art and science of composing the 
prompt and the parameters of an LLM to get the desired response.

The big question is: how do these large language models work? The next section explores the 
core building blocks of LLMs, focusing on transformer architectures and their evolution from 
the original ‘Attention is all you need’ paper1 to the latest models such as Gemini, Google’s 
most capable LLM. We also cover training and fine-tuning techniques, as well as methods to 
improve the speed of response generation. The whitepaper concludes with a few examples 
of how language models are used in practice.



Foundational Large Language Models & Text Generation

8September 2024

Large language models
A language model predicts the probability of a sequence of words. Commonly, when given 
a prefix of text, a language model assigns probabilities to subsequent words. For example, 
given the prefix “The most famous city in the US is…”, a language model might predict high 
probabilities to the words “New York” and “Los Angeles” and low probabilities to the words 
“laptop” or “apple”. You can create a basic language model by storing an n-gram table,2 while 
modern language models are often based on neural models, such as transformers.

Before the invention of transformers1, recurrent neural networks (RNNSs) were the popular 
approach for modeling sequences. In particular, “long short-term memory” (LSTM) and 
“gated recurrent unit” (GRU) were common architectures.3 This area includes language 
problems such as machine translation, text classification, text summarization, and question-
answering, among others. RNNs process input and output sequences sequentially. They 
generate a sequence of hidden states based on the previous hidden state and the current 
input. The sequential nature of RNNs makes them compute-intensive and hard to parallelize 
during training (though recent work in state space modeling is attempting to overcome 
these challenges).

Transformers, on the other hand, are a type of neural network that can process sequences 
of tokens in parallel thanks to the self-attention mechanism.1 This means that transformers 
can better model long-term contexts and are easier to parallelize than RNNs. This makes 
them significantly faster to train, and more powerful compared to RNNs for handling long-
term dependencies in long sequence tasks. However, the cost of self-attention in the original 
transformers is quadratic in the context length which limits the size of the context, while 
RNNs have a theoretically infinite context length. Transformers have become the most 
popular approach for sequence modeling and transduction problems in recent years.

Herein, we discuss the first version of the transformer model and then move on to the more 
recent advanced models and algorithms.



Foundational Large Language Models & Text Generation

9September 2024

Transformer

The transformer architecture was developed at Google in 2017 for use in a translation model.1 
It’s a sequence-to-sequence model capable of converting sequences from one domain 
into sequences in another domain. For example, translating French sentences to English 
sentences. The original transformer architecture consists of two parts: an encoder and a 
decoder. The encoder converts the input text (e.g., a French sentence) into a representation, 
which is then passed to the decoder. The decoder uses this representation to generate the 
output text (e.g., an English translation) autoregressively.1 Notably, the size of the output of 
the transformer encoder is linear in the size of its input. Figure 1 shows the design of the 
original transformer architecture.

The transformer consists of multiple layers. A layer in a neural network comprises a set of 
parameters that perform a specific transformation on the data. In the diagram you can see 
an example of some layers which include Multi-Head Attention, Add & Norm, Feed-Forward, 
Linear, Softmax etc. The layers can be sub-divided into the input, hidden and output layers. 
The input layer (e.g., Input/Output Embedding) is the layer where the raw data enters the 
network. Input embeddings are used to represent the input tokens to the model. Output 
embeddings are used to represent the output tokens that the model predicts. For example, in 
a machine translation model, the input embeddings would represent the words in the source 
language, while the output embeddings would represent the words in the target language. 
The output layer (e.g., Softmax) is the final layer that produces the output of the network. The 
hidden layers (e.g., Multi-Head Attention) are between the input and output layers and are 
where the magic happens!



Foundational Large Language Models & Text Generation

10September 2024

Figure 1. Original Transformer1 (P.C:5)



Foundational Large Language Models & Text Generation

11September 2024

To better understand the different layers in the transformer, let’s use a French-to-English 
translation task as an example. Here, we explain how a French sentence is input into the 
transformer and a corresponding English translation is output. We will also describe each of 
the components inside the transformer from Figure 1.

Input preparation and embedding

To prepare language inputs for transformers, we convert an input sequence into tokens and 
then into input embeddings. At a high level, an input embedding is a high-dimensional vector 
that represents the meaning of each token in the sentence. This embedding is then fed into 
the transformer for processing. Generating an input embedding involves the following steps:

1.	 Normalization (Optional): Standardizes text by removing redundant whitespace, 
accents, etc.

2.	 Tokenization: Breaks the sentence into words or subwords and maps them to integer 
token IDs from a vocabulary.

3.	 Embedding: Converts each token ID to its corresponding high-dimensional vector, 
typically using a lookup table. These can be learned during the training process.

4.	 Positional Encoding: Adds information about the position of each token in the sequence 
to help the transformer understand word order.

These steps help to prepare the input for the transformers so that they can better 
understand the meaning of the text.



Foundational Large Language Models & Text Generation

12September 2024

Multi-head attention

After converting input tokens into embedding vectors, you feed these embeddings into 
the multi-head attention module (see Figure 1). Self-attention is a crucial mechanism in 
transformers; it enables them to focus on specific parts of the input sequence relevant to 
the task at hand and to capture long-range dependencies within sequences more effectively 
than traditional RNNs. 

Understanding self-attention

Consider the following sentence: “The tiger jumped out of a tree to get a drink because it 
was thirsty.” Self-attention helps to determine relationships between different words and 
phrases in sentences. For example, in this sentence, “the tiger” and “it” are the same object, 
so we would expect these two words to be strongly connected. Self-attention achieves this 
through the following steps (Figure 2):

1.	 Creating queries, keys, and values: Each input embedding is multiplied by three learned 
weight matrices (Wq, Wk, Wv) to generate query (Q), key (K), and value (V) vectors. These 
are like specialized representations of each word.

•	 Query: The query vector helps the model ask, “Which other words in the sequence are 
relevant to me?”

•	 Key: The key vector is like a label that helps the model identify how a word might be 
relevant to other words in the sequence.

•	 Value: The value vector holds the actual word content information.

2.	 Calculating scores: Scores are calculated to determine how much each word should 
‘attend’ to other words. This is done by taking the dot product of the query vector of one 
word with the key vectors of all the words in the sequence.



Foundational Large Language Models & Text Generation

13September 2024

3.	 Normalization: The scores are divided by the square root of the key vector dimension (dk) 
for stability, then passed through a softmax function to obtain attention weights. These 
weights indicate how strongly each word is connected to the others.

4.	 Weighted values: Each value vector is multiplied by its corresponding attention weight. 
The results are summed up, producing a context-aware representation for each word.

Figure 2. The process of computing self-attention in the multi-head attention module1 (P.C:5)  



Foundational Large Language Models & Text Generation

14September 2024

In practice, these computations are performed at the same time, by stacking the query, key 
and value vectors for all the tokens into Q, K and V matrices and multiplying them together as 
shown in Figure 3.

Figure 3. The basic operation of attention,1  with Q=query, K=Keys and V=Value, Z=Attention, d_k = dimension 
of queries and keys (P.C:5)

Multi-head attention: power in diversity

Multi-head attention employs multiple sets of Q, K, V weight matrices. These run in parallel, 
each ‘head’ potentially focusing on different aspects of the input relationships. The outputs 
from each head are concatenated and linearly transformed, giving the model a richer 
representation of the input sequence.

The use of multi-head attention improves the model’s ability to handle complex language 
patterns and long-range dependencies. This is crucial for tasks that require a nuanced 
understanding of language structure and content, such as machine translation, text 
summarization, and question-answering. The mechanism enables the transformer to consider 
multiple interpretations and representations of the input, which enhances its performance on 
these tasks. 



Foundational Large Language Models & Text Generation

15September 2024

Layer normalization and residual connections

Each layer in a transformer, consisting of a multi-head attention module and a feed-forward 
layer, employs layer normalization and residual connections. This corresponds to the Add 
and Norm layer in Figure 1, where ‘Add’ corresponds to the residual connection and ‘Norm’ 
corresponds to layer normalization. Layer normalization computes the mean and variance 
of the activations to normalize the activations in a given layer. This is typically performed to 
reduce covariate shift as well as improve gradient flow to yield faster convergence during 
training as well as improved overall performance. 

Residual connections propagate the inputs to the output of one or more layers. This has the 
effect of making the optimization procedure easier to learn and also helps deal with vanishing 
and exploding gradients. 

The Add and Norm layer is applied to both the multi-head attention module and the feed-
forward layer described in the following section.

Feedforward layer 

The output of the multi-head attention module and the subsequent ‘Add and Norm’ layer is 
fed into the feedforward layer of each transformer block. This layer applies a position-wise 
transformation to the data, independently for each position in the sequence, which allows the 
incorporation of additional non-linearity and complexity into the model’s representations. The 
feedforward layer typically consists of two linear transformations with a non-linear activation 
function, such as ReLU or GELU, in between. This structure adds further representational 
power to the model. After processing by the feedforward layer, the data undergoes 
another ‘Add and Norm’ step, which contributes to the stability and effectiveness of deep 
transformer models.



Foundational Large Language Models & Text Generation

16September 2024

Encoder and decoder

The original transformer architecture relies on a combination of encoder and decoder 
modules. Each encoder and decoder consists of a series of layers, with each layer 
comprising key components: a multi-head self-attention mechanism, a position-wise feed-
forward network, normalization layers, and residual connections. 

The encoder’s primary function is to process the input sequence into a continuous 
representation that holds contextual information for each token. The input sequence is first 
normalized, tokenized, and converted into embeddings. Positional encodings are added to 
these embeddings to retain sequence order information. Through self-attention mechanisms, 
each token in the sequence can dynamically attend to any other token, thus understanding 
the contextual relationships within the sequence. The output from the encoder is a series of 
embedding vectors Z representing the entire input sequence. 

The decoder is tasked with generating an output sequence based on the context provided 
by the encoder’s output Z. It operates in a token-by-token fashion, beginning with a start-
of-sequence token. The decoder layers employ two types of attention mechanisms: masked 
self-attention and encoder-decoder cross-attention. Masked self-attention ensures that 
each position can only attend to earlier positions in the output sequence, preserving the 
auto-regressive property. This is crucial for preventing the decoder from having access to 
future tokens in the output sequence. The encoder-decoder cross-attention mechanism 
allows the decoder to focus on relevant parts of the input sequence, utilizing the contextual 
embeddings generated by the encoder. This iterative process continues until the decoder 
predicts an end-of-sequence token, thereby completing the output sequence generation.

Majority of recent LLMs adopted a decoder-only variant of transformer architecture. This 
approach forgoes the traditional encoder-decoder separation, focusing instead on directly 
generating the output sequence from the input. The input sequence undergoes a similar 



Foundational Large Language Models & Text Generation

17September 2024

process of embedding and positional encoding before being fed into the decoder. The 
decoder then uses masked self-attention to generate predictions for each subsequent 
token based on the previously generated tokens. This streamlined approach simplifies the 
architecture for specific tasks where encoding and decoding can be effectively merged.

Training the transformer

When talking about machine learning models, it’s important to differentiate between 
training and inference. Training typically refers to modifying the parameters of the model, 
and involves loss functions and backpropagation. Inference is when model is used only 
for the predicted output, without updating the model weights. The model parameters are 
fixed during inference. Up until now we learned how transformers generate outputs during 
inference. Next, we focus on how to train transformers to perform one or more given tasks.

Data preparation

The first step is data preparation, which involves a few important steps itself. First, clean the 
data by applying techniques such as filtering, deduplication, and normalization. The next 
step is tokenization where the dataset is converted into tokens using techniques such as 
Byte-Pair Encoding8, 9 and Unigram tokenization.8, 10 Tokenization generates a vocabulary, 
which is a set of unique tokens used by the LLM. This vocabulary serves as the model’s 
’language’ for processing and understanding text. Finally, the data is typically split into a 
training dataset for training the model as well as a test dataset which is used to evaluate the 
models performance.



Foundational Large Language Models & Text Generation

18September 2024

Training and loss function

A typical transformer training loop consists of several parts: First, batches of input 
sequences are sampled from a training dataset. For each input sequence, there is a 
corresponding target sequence. In unsupervised pre-training, the target sequence is 
derived from the input sequence itself. The batch of input sequences is then fed into the 
transformer. The transformer generates predicted output sequences. The difference 
between the predicted and target sequences is measured using a loss function (often cross-
entropy loss)11. Gradients of this loss are calculated, and an optimizer uses them to update 
the transformer’s parameters. This process is repeated until the transformer converges to a 
certain level of performance or until it has been trained on a pre-specified number of tokens. 

There are different approaches to formulating the training task for transformers depending 
on the architecture used:

•	 Decoder-only models are typically pre-trained on the language modeling task (e.g., see 
endnote12, 13). The target sequence for the decoder is simply a shifted version of the input 
sequence. Given a training sequence like ‘the cat sat on the mat’ various input/target 
pairs can be generated for the model. For example the input “the cat sat on” should 
predict “the” and subsequently the input “the cat sat on the” should predict target 
sequence “mat”.

•	 Encoder-only models (like BERT)14 are often pre-trained by corrupting the input sequence 
in some way and having the model try to reconstruct it. One such approach is masked 
language modeling (MLM).14 In our example, the input sequence could be “The [MASK] sat 
on the mat” and the sequence target would be the original sentence.

•	 Encoder-decoder models (like the original transformer) are trained on sequence-to-
sequence supervised tasks such as translation (input sequence “Le chat est assis sur 
le tapis” and target “The cat sat on the mat”), question-answering (where the input 
sequence is a question and the target sequence is the corresponding answer), and 



Foundational Large Language Models & Text Generation

19September 2024

summarization (where the input sequence is a full article and the target sequence is its 
corresponding summary). These models could also be trained in an unsupervised way by 
converting other tasks into sequence-to-sequence format. For example, when training 
on Wikipedia data, the input sequence might be the first part of an article, and the target 
sequence comprises the remainder of the article.

An additional factor to consider during training is the ‘context length’. This refers to the 
number of previous tokens the model can ‘remember’ and use to predict the next token in 
the sequence. Longer context lengths allow the model to capture more complex relationships 
and dependencies within the text, potentially leading to better performance. However, longer 
contexts also require more computational resources and memory, which can slow down 
training and inference. Choosing an appropriate context length involves balancing these 
trade-offs based on the specific task and available resources.

The evolution of transformers
The next sections provide an overview of the various transformer architectures. These 
include encoder-only, encoder-decoder, as well as decoder-only transformers. We start with 
GPT-1 and BERT and end with Google’s latest family of LLMs called Gemini.

GPT-1

GPT-1 (Generative pre-trained transformer version 1)15 was a decoder-only model developed 
by OpenAI in 2018. It was trained on the BooksCorpus dataset (containing approximately 
several billion words) and is able to generate text, translate languages, write different kinds 
of creative content, and answer questions in an informative way. The main innovations in 
GPT-1 were:



Foundational Large Language Models & Text Generation

20September 2024

•	 Combining transformers and unsupervised pre-training: Unsupervised pre-training 
is a process of training a language model on a large corpus of unlabeled data. Then, 
supervised data is used to fine-tune the model for a specific task, such as translation 
or sentiment classification. In prior works, most language models were trained using a 
supervised learning objective. This means that the model was trained on a dataset of 
labeled data, where each example had a corresponding label. This approach has two main 
limitations. First, it requires a large amount of labeled data, which can be expensive and 
time-consuming to collect. Second, the model can only generalize to tasks that are similar 
to the tasks that it was trained on. Semi-supervised sequence learning was one of the first 
works that showed that unsupervised pre-training followed by supervised training was 
superior than supervised training alone.

Unsupervised pre-training addresses these limitations by training the model on a large 
corpus of unlabeled data. This data can be collected more easily and cheaply than labeled 
data. Additionally, the model can generalize to tasks that are different from the tasks that 
it was trained on. The BooksCorpus dataset is a large (5GB) corpus of unlabeled text that 
was used to train the GPT-1 language model. The dataset contains over 7,000 unpublished 
books, which provides the model with a large amount of data to learn from. Additionally, 
the corpus contains long stretches of contiguous text, which helps the model learn long-
range dependencies. Overall, unsupervised pre-training is a powerful technique that can 
be used to train language models that are more accurate and generalizable than models 
that are trained using supervised learning alone. 

•	 Task-aware input transformations: There are different kinds of tasks such as textual 
entailment and question-answering that require a specific structure. For example, 
textual entailment requires a premise and a hypothesis; question-answering requires a 
context document; a question and possible answers. One of the contributions of GPT-1 
is converting these types of tasks which require structured inputs into an input that the 
language model can parse, without requiring task-specific architectures on top of the 
pre-trained architecture. For textual entailment, the premise p and the hypothesis h are 



Foundational Large Language Models & Text Generation

21September 2024

concatenated with a delimiter token ($) in between - [p, $, h]. For question answering, the 
context document c is concatenated with the question q and a possible answer a with a 
delimiter token in between the question and answer - [c,q,$,a].

GPT-1 surpassed previous models on several benchmarks, achieving excellent results. While 
GPT-1 was a significant breakthrough in natural language processing (NLP), it had some 
limitations. For example, the model was prone to generating repetitive text, especially when 
given prompts outside the scope of its training data. It also failed to reason over multiple 
turns of dialogue and could not track long-term dependencies in text. Additionally, its 
cohesion and fluency were limited to shorter text sequences, and longer passages would 
lack cohesion. Despite these limitations, GPT-1 demonstrated the power of unsupervised 
pre-training, which laid the foundation for larger and more powerful models based on the 
transformer architecture.

BERT

BERT14 which stands for Bidirectional Encoder Representations from Transformers, 
distinguishes itself from traditional encoder-decoder transformer models by being an 
encoder-only architecture. Instead of translating or producing sequences, BERT focuses 
on understanding context deeply by training on a masked language model objective. In 
this setup, random words in a sentence are replaced with a [MASK] token, and BERT tries 
to predict the original word based on the surrounding context. Another innovative aspect 
of BERT’s training regime is the next sentence prediction loss, where it learns to determine 
whether a given sentence logically follows a preceding one. By training on these objectives, 
BERT captures intricate context dependencies from both the left and right of a word, and 
it can discern the relationship between pairs of sentences. Such capabilities make BERT 
especially good at tasks that require natural language understanding, such as question-
answering, sentiment analysis, and natural language inference, among others. Since this is an 
encoder-only model, BERT cannot generate text.



Foundational Large Language Models & Text Generation

22September 2024

GPT-2

GPT-2,12 the successor to GPT-1, was released in 2019 by OpenAI. The main innovation of 
GPT-2 was a direct scale-up, with a tenfold increase in both its parameter count and the size 
of its training dataset:

•	 Data: GPT-2 was trained on a large (40GB) and diverse dataset called WebText, which 
consists of 45 million webpages from Reddit with a Karma rating of at least three. Karma 
is a rating metric used on Reddit and a value of three means that all the posts were of a 
reasonable level of quality.

•	 Parameters: GPT-2 had 1.5 billion parameters, which was an order of magnitude larger 
than the previous model. More parameters increase the model’s learning capacity. The 
authors trained four language models with 117M (the same as GPT-1), 345M, 762M, and 1.5B 
(GPT-2) parameters, and found that the model with the most parameters performed better 
on every subsequent task.

This scaling up resulted in a model that was able to generate more coherent and realistic text 
than GPT-1. Its ability to generate human-like responses made it a valuable tool for various 
natural language processing tasks, such as content creation and translation. Specifically, 
GPT-2 demonstrated significant improvement in capturing long-range dependencies and 
common sense reasoning. While it performed well in some tasks, it did not outperform state-
of-the-art reading comprehension, summarization, and translation. GPT-2’s most significant 
achievement was its ability to perform zero-shot learning on a variety of tasks. Zero-shot task 
transfer is the ability of a model to generalize to a new task without being trained on it, which 
requires the model to understand the task based on the given instruction. For example, for 
an English to German translation task, the model might be given an English sentence followed 
by the word “German” and a prompt (“:”). The model would then be expected to understand 
that this is a translation task and generate the German translation of the English sentence. 
GPT-2 was able to perform tasks such as machine translation, text summarization, and 
reading comprehension without any explicit supervision.



Foundational Large Language Models & Text Generation

23September 2024

The study discovered that performance on zero-shot tasks increased in a log-linear manner 
as the model’s capacity increased. GPT-2 showed that training on a larger dataset and having 
more parameters improved the model’s ability to understand tasks and surpass the state-of-
the-art on many tasks in zero-shot settings.

GPT-3/3.5/4

GPT-3,13 or the third iteration of the Generative Pre-trained Transformer model, represents a 
significant evolution from its predecessor, GPT-2, primarily in terms of scale, capabilities, and 
flexibility. The most noticeable difference is the sheer size of GPT-3, boasting a whopping 
175 billion parameters, compared to GPT-2’s largest model which had 1.5 billion parameters. 
This increase in model size allowed GPT-3 to store and recall an even more vast amount of 
information, understand nuanced instructions, and generate more coherent and contextually 
relevant text over longer passages.

While GPT-2 could be fine-tuned on specific tasks with additional training data, GPT-3 can 
understand and execute tasks with just a few examples, or sometimes even without any 
explicit examples—simply based on the instruction provided. This highlights GPT-3’s more 
dynamic understanding and adaptation abilities, reducing the need for task-specific fine-
tuning which was more prevalent in GPT-2.

Finally, GPT-3’s large model scale and diverse training corpus have led to better 
generalization across a broader range of tasks. This means that out-of-the-box, without 
any further training, GPT-3 exhibits improved performance on diverse NLP challenges, from 
translation to question-answering, compared to GPT-2. It’s also worth noting that the release 
approach differed: while OpenAI initially held back GPT-2 due to concerns about misuse, 
they chose to make GPT-3 available as a commercial API, reflecting both its utility and the 
organization’s evolving stance on deployment.



Foundational Large Language Models & Text Generation

24September 2024

Instruction tuning was then introduced with InstructGPT17, a version of GPT-3 that was fine-
tuned, using Supervised Fine-Tuning, on a dataset of human demonstrations of desired 
model behaviors. Outputs from this model were then ranked and it was then further fine-
tuned using Reinforcement Learning from Human Feedback. This led to improved instruction 
following in the model. A 1.3B parameter InstructGPT model had better human evaluations 
than the 175B parameter GPT-3 model. It also showed improvements in truthfulness and 
reductions in toxicity.

GPT-3.5 models, including GPT-3.5 turbo, improve over GPT-3 as it is capable of 
understanding and generating code. It’s been optimized for dialogue. And it’s capable of 
receiving context windows of up to 16,385 tokens and can generate outputs of up to 4,096 
tokens. 

GPT-4 extends GPT-3.5 as a large multimodal model capable of processing image and 
text inputs and producing text outputs.19 Specifically, accepting text or images as input 
and outputting text. This model has broader general knowledge and advanced reasoning 
capabilities. It can receive context windows of up to 128,000 tokens and has a maximum 
output of 4,096 tokens. GPT-4 demonstrates remarkable versatility by solving complex tasks 
across diverse fields like mathematics, coding, vision, medicine, law, and psychology – all 
without specialized instructions. Its performance often matches or even exceeds human 
capabilities and significantly outperforms earlier models like GPT-3.5.

LaMDA

Google’s LaMDA,20 which stands for ‘Language Model for Dialogue Applications’ is another 
contribution to the arena of large-scale language models, designed primarily to engage in 
open-ended conversations. Unlike traditional chatbots which operate in more constrained 
and predefined domains, LaMDA is engineered to handle a wide array of topics, delivering 



Foundational Large Language Models & Text Generation

25September 2024

more natural and flowing conversations. LaMDA was trained on dialogue-focused data to 
encourage ongoing conversational flow, not just isolated responses, ensuring users can have 
more extensive and explorative dialogues.

While GPT models, especially the later iterations like GPT-3, have strived to address a 
multitude of tasks simultaneously, from text generation to code writing, LaMDA’s primary 
focus is on maintaining and enhancing conversational depth and breadth. GPT models 
shine on their ability to produce coherent long-form content and perform various tasks 
with minimal prompting, whereas LaMDA emphasizes the flow and progression of dialogue, 
striving to mimic the unpredictability and richness of human conversations. 

Gopher

Gopher22 is a 280 billion parameter language model based on the decoder-only transformer 
architecture, developed by DeepMind in 2021.22 It can generate text, translate languages, 
write different kinds of creative content, and answer your questions in an informative way. 
Similar to GPT-3, Gopher focused on improving dataset quality and optimization techniques:

•	 Dataset: The researchers curated a high-quality text dataset called MassiveText, which 
contains over 10 terabytes of data and 2.45B documents from web pages, books, news 
articles, and code (GitHub). They only trained on 300B tokens, which is 12% of the dataset. 
Importantly, they improved the quality of the data by filtering it, such as by removing 
duplicate text and deduplicating similar documents. This significantly improved the 
model’s performance on downstream tasks.

•	 Optimization: The researchers used a warmup learning rate for 1,500 steps and then 
decayed it using a cosine schedule. They also had an interesting rule that as they 
increased the model size, they decreased the learning rate and increased the number of 
tokens in each batch. Additionally, they found that clipping gradients to be a maximum of 1 
based on the global gradient norm helped stabilize the training.



Foundational Large Language Models & Text Generation

26September 2024

Gopher was evaluated on a variety of tasks, including mathematics, common sense, logical 
reasoning, general knowledge, scientific understanding, ethics, and reading comprehension. 
Gopher outperformed previous state-of-the-art models on 81% of the tasks. Specifically, 
Gopher performed well on knowledge-intensive tasks but struggled on reasoning-heavy 
tasks such as abstract algebra.

The authors also conducted a study on the effect of model size on different types of 
tasks. Figure 4 shows the results of this ablation study. Specifically, the authors found that 
increasing the number of parameters had a significant impact on logical reasoning and 
reading comprehension, but it did not improve performance as much on tasks such as 
general knowledge, where performance eventually almost plateaued.

Figure 4. Ablation study22 on the effect of model size on the performance of Gopher on different types 
of tasks

GLaM

GLaM (Generalist Language Model)23 was the first sparsely-activated mixture-of-experts 
language model. Mixture-of-experts based models are much more computationally efficient 
given their parameter count. This is achieved by only activating a subset of their parameters 



Foundational Large Language Models & Text Generation

27September 2024

(i.e. experts) for each input token. GLaM consists of 1.2 trillion parameters but uses only ⅓ 
of the energy used to train GPT-3 and half of the FLOPs for inference while achieving better 
overall performance compared to GPT-3.

Chinchilla

Until 2022, LLMs were primarily scaled by increasing the model size and using datasets that 
are relatively small by current standards (up to 300 billion tokens for the largest models). 
This approach was informed by the Kaplan et al.24 study, which examined how performance 
of a language model, measured by cross-entropy loss, varies with changes in computational 
budget, model size, and dataset size. Specifically, given a 100-fold increase in computational 
resources (C), Kaplan et al.24 recommended scaling model size by approximately 28.8 times 
(Nopt∝ C0.73), while increasing dataset size by only 3.5 times (Dopt∝ C0.27). 

The Chinchilla paper,25 revisited the compute optimal scaling laws and used three different 
approaches to find that near equal scaling in parameters and data is optimal with increasing 
compute. Thus, a 100-fold increase in compute should translate into a tenfold increase in 
both data size and model size. 

Figure 5. Overlaid predictions from three different approaches from Chinchilla paper,25 along with 
projections from Kaplan et al24 



Foundational Large Language Models & Text Generation

28September 2024

To verify the updated scaling law, DeepMind trained a 70B parameter model (called 
Chinchilla) using the same compute budget as the previously trained Gopher model. 
Chinchilla uniformly and significantly outperformed Gopher (280B),21 GPT-3 (175B),13 and 
Megatron-Turing NLG (530B)26 on a large range of downstream evaluation tasks. Due to being 
4x smaller than Gopher, both the memory footprint and the inference cost of Chinchilla are 
also smaller.

The findings of Chinchilla had significant ramifications for the development of future LLMs. 
Focus shifted into finding ways to scale dataset size (while maintaining quality) alongside 
increasing parameter count. Extrapolating this trend suggests that training dataset size 
may soon be limited by the amount of text data available. This has led to new research by 
Muennighoff et al.27 exploring scaling laws in data-constrained regimes.

PaLM

Pathways language model (PaLM)28 is a 540-billion parameter transformer-based large 
language model developed by Google AI. It was trained on a massive dataset of text and 
code and is capable of performing a wide range of tasks, including common sense reasoning, 
arithmetic reasoning, joke explanation, code generation, and translation.

At the time of its release, PaLM was also able to achieve state-of-the-art performance on 
many language benchmarks, for example GLUE and SuperGLUE.29

One of the key features of PaLM is its ability to scale efficiently. This is thanks to the 
Pathways system, which Google developed to distribute the training of large language 
models across two TPU v4 Pods.



Foundational Large Language Models & Text Generation

29September 2024

PaLM 2

PaLM 230 is a successor to PaLM that was announced in May 2023. Thanks to a number of 
architectural and training enhancements, PaLM 2 is even more capable than PaLM, with 
fewer total parameters. It excels at advanced reasoning tasks, including code generation, 
math, classification, question answering, and translation.

PaLM 2 has also been shown to be more efficient than PaLM and became the basis for a 
number of commercial models Google released as part of Google Cloud Generative AI.

Gemini

Figure 6. Gemini can receive multi-modal inputs including text, audio, images, and video data. These are all 
tokenized and fed into its transformer model. The transformer generates an output that can contain images 
and text 



Foundational Large Language Models & Text Generation

30September 2024

Gemini31 (Figure 6) is a state-of-the-art multimodal language family of models that can 
take interleaved sequences of text, image, audio, and video as input. It’s built on top of 
transformer decoders and has architectural improvements for scale as well as optimized 
inference on Google’s Tensor Processing Units (TPUs). In its current 1.5 version, these models 
are trained to support contexts of different sizes, up to 2M tokens in the Gemini 1.5 Pro 
version on Vertex AI and employ mechanisms such as multi-query attention for efficiency. 
Gemini models also employ a Mixture of Experts architecture to optimize efficiency and 
capabilities of the models. Multimodality allows the models to process text, images and video 
in input, with more modalities in input and output expected in the future.

The Gemini models are trained on Google’s TPUv5e and TPUv4 processors, depending on 
size and configuration. The pre-training data consists of web documents, books, code, and 
image, audio, and video data. 

Larger models are trained for the compute-optimal number of tokens using the same 
approach as in Chinchilla paper,25 while small models are trained on significantly more tokens 
than compute optimal to improve performance for a given inference budget.

The Gemini family of models is optimized for different sizes: Gemini Ultra, Gemini Pro, Gemini 
Nano and Flash. Gemini Ultra is used for highly complex tasks and achieves state-of-the-
art results in 30 out of 32 benchmark tasks. Gemini Pro enables deployment at scale and 
Gemini Nano is designed for on-device applications. The Gemini Nano models leverage 
advancements such as distillation to produce state-of-the-art performance for small 
language models on tasks such as summarization and reading comprehension. As the Gemini 
models are natively multi-modal, it can be seen that training across multiple modalities does 
indeed lead to a model that is capable of achieving strong capabilities in each domain. 



Foundational Large Language Models & Text Generation

31September 2024

During the initial part of 2024, Google introduced the latest model of the Gemini family, 
Gemini 1.5 Pro,32 a highly compute-efficient multimodal mixture-of-experts model. This 
model  also dramatically increased the size of the context window to millions of tokens 
and is capable of recalling and reasoning over those millions of tokens, including multiple 
long documents and hours of video and audio. Gemini 1.5 Pro demonstrates remarkable 
capabilities across different domains:

•	 Code understanding: It can process massive codebases and answer highly specific 
code-related questions.

•	 Language learning: The model can learn new languages never observed at training time 
solely based on reference materials provided within its input

•	 Multimodal reasoning: It understands images and text, allowing it to locate a famous scene 
from the novel ‘Les Misérables’ based on a simple sketch.

•	 Video comprehension: It can analyze entire movies, answering detailed questions and 
pinpointing specific timestamps with remarkable accuracy.

Google’s Gemini 1.5 Pro model excels at retrieving information from even very long 
documents. In their study,32 it demonstrated 100% recall on documents up to 530,000 
tokens, and over 99.7% recall on those up to 1 million tokens. Impressively, it maintains 99.2% 
accuracy when finding information in documents up to 10 million tokens.

Moreover, Gemini 1.5 Pro demonstrates a major leap forward in how well LLMs follow complex 
instructions. In a rigorous test with 406 multi-step prompts, it significantly outperformed 
previous Gemini models. The model accurately followed almost 90% of instructions and fully 
completed 66% of the complex tasks. 



Foundational Large Language Models & Text Generation

32September 2024

Gemini Flash is a new addition to the Gemini model family and the fastest Gemini model 
served in the API. It’s optimized for high-volume, high-frequency tasks at scale, is more 
cost-efficient to serve and features a breakthrough long context window of 1 million tokens. 
Although it is a lighter weight model than 1.5 Pro, it is highly capable of multimodal reasoning 
across vast amounts of information and delivers impressive quality for its size.

Furthermore, recently advanced Gemma is a family of lightweight, state-of-the-art open 
models built from the same research and technology used to create the Gemini models.33 The 
first model by Gemma boasts a large vocabulary of 256,000 words and has been trained on 
a massive 6 trillion token dataset. This makes it a valuable addition to the openly-available 
LLM collection. Additionally, the 2B parameter version is intriguing as it can run efficiently on 
a single GPU.

Gemma 2,33 developed by Google AI, represents a significant advancement in the field of 
open large language models. Designed with a focus on efficiency, the 27-billion parameter 
model boasts performance comparable to much larger models like Llama 3 70B33 on standard 
benchmarks. This makes Gemma 2 a powerful and accessible tool for a wide range of AI 
developers. Its compatibility with diverse tuning toolchains, from cloud-based solutions 
to popular community tools, further enhances its versatility. With its strong performance, 
efficient architecture, and accessible nature, Gemma 2 plays a vital role in driving innovation 
and democratizing AI capabilities.

Other open models

The landscape of open LLMs is rapidly evolving, with a growing number of models where 
both the code and pre-trained weights are publicly accessible. Below we highlight some of 
the known examples:



Foundational Large Language Models & Text Generation

33September 2024

•	 LLaMA 234: Released by Meta AI, LLaMA 2 is a family of pretrained and fine-tuned 
LLMs ranging from 7B to 70B parameters. It shows significant improvements over its 
predecessor, LLaMA 1, including a 40% larger pre-training dataset (2 trillion tokens), 
doubled context length (4096 tokens), and the use of grouped-query attention. The 
fine-tuned version, LLaMA 2-Chat, is optimized for dialogue and shows competitive 
performance against closed-source models of the same size.

•	 LLaMA 3.221: Released by Meta AI, LLaMA 3.2 is the next generation of their open LLMs. 
Llama 3.2 includes multilingual text-only models (1B, 3B) and vision LLMs (11B, 90B), with 
quantized versions of 1B and 3B offering on average up to 56% smaller size and 2-3x 
speedup, ideal for on-device and edge deployments. LLaMA 3.2 utilizes grouped-query 
attention and a 128K token vocabulary for enhanced performance and efficiency.

•	 Mixtral35: Developed by Mistral AI, Mixtral 8x7B is a Sparse Mixture of Experts (SMoE) 
model. While its total parameter count is 47B, it utilizes only 13B active parameters per 
token during inference, leading to faster inference and higher throughput. This model 
excels in mathematics, code generation, and multilingual tasks, often outperforming 
LLaMA 2 70B in these domains. Mixtral also supports a 32k token context length, enabling 
it to handle significantly longer sequences. Its instruction-tuned version, Mixtral 8x7B-
Instruct, surpasses several closed-source models on human evaluation benchmarks.

•	 Qwen 1.536: This LLM series from Alibaba comes in six sizes: 0.5B, 1.8B, 4B, 7B, 14B, and 
72B. Qwen 1.5 models uniformly support a context length of up to 32k tokens and show 
strong performance across various benchmarks. Notably, Qwen 1.5-72B outperforms 
LLaMA2-70B on all evaluated benchmarks, demonstrating exceptional capabilities in 
language understanding, reasoning, and math.

•	 Yi37: Created by 01.AI, the Yi model family includes 6B and 34B base models pre-trained 
on a massive 3.1 trillion token English and Chinese dataset. Yi emphasizes data quality 
through rigorous cleaning and filtering processes. The 34B model achieves performance 



Foundational Large Language Models & Text Generation

34September 2024

comparable to GPT-3.5 on many benchmarks and can be efficiently served on consumer-
grade GPUs with 4-bit quantization. Yi also offers extensions like a 200k context model, a 
vision-language model (Yi-VL), and a depth-upscaled 9B model.

•	 Grok-138: Developed by xAI, Grok-1 is a 314B parameter Mixture-of-Experts model with 
25% of the weights active on a given token. It is the raw base model checkpoint from the 
pre-training phase and is not fine-tuned for specific tasks like dialogue. Grok-1 operates 
with a context length of 8k tokens.

The pace of innovation with LLMs has been rapid and shows no signs of slowing down. There 
have been many contributions to the field in both the academic and commercial settings. 
With over 20,000 papers published about LLMs in arxiv.org it is impossible to name all 
of the models and teams that have contributed to the development of LLMs. However, an 
abbreviated list of open models of interest could include EleutherAI’s GPT-NeoX and GPT-J, 
Stanford’s Alpaca, Vicuna from LMSYS, Grok from xAI, Falcon from TII, PHI from Microsoft, 
NVLM from Nvidia, DBRX from Databricks, Qwen from Alibaba, Yi from 01.ai, Llama from 
Meta mentioned above and many others. Some of notable companies developing commercial 
foundation LLM models include Anthropic, Cohere, Character.ai, Reka, AI21, Perplexity, xAI 
and many others in addition to Google and OpenAI mentioned in previous sections. It is 
important when using a model to confirm that the license is appropriate for your use case as 
many models are provided with very specific terms of use.

Comparison

In this section, we observed how transformer-based language models have evolved. They 
started as encoder-decoder architectures with hundreds of millions of parameters trained 
on hundreds of millions of tokens, and have grown to be massive decoder-only architectures 
with billions of parameters and trained on trillions of tokens. Table 1 shows how the 
important hyperparameters for all the models discussed in this whitepaper have evolved 

http://arxiv.org
http://01.ai


Foundational Large Language Models & Text Generation

35September 2024

over time. The scaling of data and parameters has not only improved the performance of 
LLMs on downstream tasks, but has also resulted in emergent behaviors and zero- or few-
shot generalizations to new tasks. However, even the best of these LLMs still have many 
limitations. For example, they are not good at engaging in human-like conversations, their 
math skills are limited, and they might not be aligned with human ethics (e.g., they might be 
biased or generate toxic responses). In the next section, we learn how a lot of these issues 
are being addressed.



Foundational Large Language Models & Text Generation

36September 2024

Model
Attention
(2017)

GPT 
(2018)

GPT-2
(2019)

GPT-3
(2020)

LaMDA  
(2021)

Gopher
(2021)

Chinchilla
(2022)

Optimizer ADAM ADAM ADAM ADAM ADAM ADAM ADAM-W

# Parameters 213M 117M 1.5B 175B 137B 280B 70B

Vocab size ~37K ~40K ~50K ~50K ~32K ~32K ~32K
Embedding 
dimension 1024 768 1600 12288 8192 16384 8192

Key dimension 64 64 64 128 128 128 128

# heads (H) 16 12 25 96 128 128 64
# encoder 
layers 6 N/A N/A N/A N/A N/A N/A

# decoder 
layers 6 12 48 96 64 80 80

Feed forward 
dimension 4 * 1024 4 * 768 4 * 1600 4 * 12288 8 * 8192 4 * 16384 4 * 8192

Context Token 
Size N/A 512 1024 2048 N/A 2048 2048

Pre-Training 
tokens ~160MA ~1.25BA ~10B ~300B ~168B ~300B ~1.4T

Table 1. Important hyperparameters for transformers-based large language models

A.	 This number is an estimate based on the reported size of the dataset.



Foundational Large Language Models & Text Generation

37September 2024

Fine-tuning large language models
Large language models typically undergo multiple training stages. The first stage, often 
referred to as pre-training, is the foundational stage where an LLM is trained on large, 
diverse, and unlabelled text datasets where it’s tasked to predict the next token given the 
previous context. The goal of this stage is to leverage a large, general distribution of data 
and to create a model that is good at sampling from this general distribution. After language 
model pretraining, the resulting LLM usually demonstrates a reasonable level of language 
understanding and language generation skills across a variety of different tasks which 
are typically tested through zero-shot or few-shot prompting (augmenting the instruction 
with a few examples / demonstrations). Pretraining is the most expensive in terms of time 
(from weeks to months depending on the size of the model) and the amount of required 
computational resources, (GPU/TPU hours).

After training, the model can be further specialized via fine-tuning, typically called 
instruction-tuning or simply supervised fine-tuning (SFT). SFT involves training an LLM on a 
set of task-specific demonstration datasets where its performance is also measured across 
a set of domain-specific tasks. The following are some examples of behaviors that can be 
improved using fine-tuning:

•	 Instruction-tuning/instruction following: The LLM is provided as input an instruction to 
follow which might include summarizing a piece of text, writing a piece of code, or writing 
a poem in a certain style.17

•	 Dialogue-tuning: This is a special case of instruction tuning where the LLM is fine-tuned 
on conversational data in the form of questions and responses. This is often called 
multi-turn dialogue.39



Foundational Large Language Models & Text Generation

38September 2024

•	 Safety tuning: This is crucial for mitigating risks associated with bias, discrimination, and 
toxic outputs. It involves a multi-pronged approach encompassing careful data selection, 
human-in-the-loop validation, and incorporating safety guardrails. Techniques like 
reinforcement learning with human feedback (RLHF)40 enable the LLM to prioritize safe 
and ethical responses.

Fine-tuning is considerably less costly and more data efficient compared to pre-training. 
Numerous techniques exist to optimize the costs further which are discussed later in 
this whitepaper.

Supervised fine-tuning 

As mentioned in the previous section, SFT is the process of improving an LLM’s performance 
on a specific task or set of tasks by further training it on domain-specific, labeled data. The 
dataset is typically significantly smaller than the pre-training datasets, and is usually human-
curated and of high quality. 

In this setting, each data point consists of an input (prompt) and a demonstration (target 
response). For example, questions (prompt) and answers (target response), translations from 
one language (prompt) to another language (target response), a document to summarize 
(prompt), and the corresponding summary (target response). 

It’s important to note that, while fine-tuning can be used to improve the performance on 
particular tasks as mentioned above, it can also serve the purpose of helping the LLM 
improve its behavior to be safer, less toxic, more conversational, and better at following 
instructions. 



Foundational Large Language Models & Text Generation

39September 2024

Reinforcement learning from human feedback

Typically, after performing SFT, a second stage of fine-tuning occurs which is called 
reinforcement learning from human feedback (RLHF). This is a very powerful fine-tuning 
technique that enables an LLM to better align with human-preferred responses (i.e. making 
its responses more helpful, truthful, safer, etc.). 

Figure 7. An example RLHF procedure 

In contrast to SFT, where an LLM is only exposed to positive examples (e.g. high-quality 
demonstration data), RLHF makes it possible to also leverage negative outputs thus 
penalizing an LLM when it generates responses that exhibit undesired properties. Penalizing 
negative output makes it less likely to generate unhelpful or unsafe responses. 

To leverage RLHF, a reward model (RM) typically needs to be trained with a procedure similar 
to that in Figure 7. An RM is usually initialized with a pretrained transformer model, often also 
one that is SFT. Then it is tuned on human preference data which is either single sided (with a 
prompt, response and a score) or composed of a prompt and a pair of responses along with 



Foundational Large Language Models & Text Generation

40September 2024

a preference label indicating which of the two responses was preferred. For example, given 
two summaries, A and B, of the same article, a human rater selects a preferred summary 
(relying on the detailed guidance). We refer to the provided preference labels as human 
feedback. Preferences can be in the binary form (e.g. ‘good’ or ‘bad’), on the Likert scale42, 
rank order when more than 2 candidates are evaluated, or a more detailed assessment of the 
summary quality. The preference signal can also incorporate many dimensions that capture 
various aspects that define a high quality response, e.g., as safety, helpfulness, fairness, and 
truthfulness. 

Figure 7 shows a typical RLHF pipeline where a Reward model is initialized and finetuned on 
preference pairs. Once an RM has been trained, it’s then used by a Reinforcement Learning 
(RL)43 policy gradient algorithm, which further finetunes a previously instruction-tuned LLM to 
generate responses that are better aligned with human preferences. 

To better scale RLHF, RL from AI Feedback (RLAIF)44 leverages AI feedback instead of human 
feedback to generate preference labels. It’s also possible to remove the need for training 
RLHF by leveraging approaches such as direct preference optimization (DPO).45 Both RLHF 
and RLAIF can be used on Google Cloud.



Foundational Large Language Models & Text Generation

41September 2024

Parameter Efficient Fine-Tuning

Both SFT and RLHF are still very costly in terms of compute time and accelerators required, 
especially when full-fine tuning entire LLMs on the orders of billions of parameters. Luckily, 
there are some really useful and effective techniques that can make fine-tuning significantly 
cheaper and faster compared to pre-training and full fine-tuning. One such family of 
methods is parameter efficient fine-tuning (PEFT) techniques. 

At a high-level, PEFT approaches append a significantly smaller set of weights (e.g., on the 
order of thousands of parameters) that are used to ‘perturb’ the pre-trained LLM weights. 
The perturbation has the effect of fine-tuning the LLM to perform a new task or set of tasks. 
This has the benefit of training a significantly smaller set of weights, compared to traditional 
fine-tuning of the entire model. 

Some common PEFT techniques include the adapter, low-rank adaptation, and 
soft prompting:

•	 Adapter-based fine-tuning46 employs small modules, called adapters, to the pre-
trained model. Only the adapter parameters are trained, resulting in significantly fewer 
parameters than traditional SFT. 

•	 Low-Rank Adaptation (LoRA)47 tackles efficiency differently. It uses two smaller matrices 
to approximate the original weight matrix update instead of fine-tuning the whole LLM. 
This technique freezes the original weights and trains these update matrices, significantly 
reducing resource requirements with minimum additional inference latency. Additionally, 
LoRA has improved variants such as QLoRA,48 which uses quantized weights for even 
greater efficiency. A nice advantage of LoRA modules is that they can be plug-and-play, 
meaning you can train a LoRA module that specializes in one task and easily replace it with 
another LoRA module trained on a different task. It also makes it easier to transfer the 
model since assuming the receiver has the original matrix, only the update matrices need 
to be provided.



Foundational Large Language Models & Text Generation

42September 2024

•	 Soft prompting49 is a technique for conditioning frozen large language models with 
learnable vectors instead of hand-crafted text prompts. These vectors, called soft 
prompts, are optimized on the training data and can be as few as five tokens, making them 
parameter-efficient and enabling mixed-task inference. 

For most tasks, full fine-tuning is still the most performant, followed by LoRA and Soft 
prompting, but the order is reversed when it comes to cost. All three approaches are more 
memory efficient than traditional fine-tuning and achieve comparable performance.



Foundational Large Language Models & Text Generation

43September 2024

Python

# Before you start run this command:
# pip install --upgrade --user --quiet google-cloud-aiplatform
# after running pip install make sure you restart your kernel

import vertexai
from vertexai.generative_models import GenerativeModel
from vertexai.preview.tuning import sft

# TODO : Set values as per your requirements
# Project and Storage Constants
PROJECT_ID = ‘<project_id>’
REGION = ‘<region>’

vertexai.init(project=PROJECT_ID, location=REGION)

# define training & eval dataset.
TRAINING_DATASET = ‘gs://cloud-samples-data/vertex-ai/model-evaluation/
peft_train_sample.jsonl’
# set base model and specify a name for the tuned model
BASE_MODEL = ‘gemini-1.5-pro-002’
TUNED_MODEL_DISPLAY_NAME = ‘gemini-fine-tuning-v1’

# start the fine-tuning job
sft_tuning_job = sft.train(
   source_model=BASE_MODEL,
   train_dataset=TRAINING_DATASET,
   # # Optional:
   tuned_model_display_name=TUNED_MODEL_DISPLAY_NAME,
)

# Get the tuning job info.
sft_tuning_job.to_dict()

# tuned model endpoint name
tuned_model_endpoint_name = sft_tuning_job.tuned_model_endpoint_name

# use the tuned model
tuned_genai_model = GenerativeModel(tuned_model_endpoint_name)
print(tuned_genai_model.generate_content(contents=’What is a LLM?’))

Snippet 1. SFT fine tuning on Google cloud



Foundational Large Language Models & Text Generation

44September 2024

Using large language models
Prompt engineering and sampling techniques have a strong influence on the performance of 
LLMs. Prompt engineering is the process of designing and refining the text inputs (prompts) 
that you feed into an LLM to achieve desired and relevant outputs. Sampling techniques 
determine the way in which output tokens are chosen and influence the correctness, 
creativity and diversity of the resulting output. We next discuss different variants of prompt 
engineering and sampling techniques as well as touch on some important parameters that 
can have a significant impact on LLM performance.

Prompt engineering 

LLMs are very powerful, but they still need guidance to unleash their full potential. Prompt 
engineering is a critical component in guiding an LLM to yield desired outputs. This might 
include grounding the model to yield factual responses or unleashing the creativity of the 
model to tell a story or write a song. Examples of prompt engineering include providing 
clear instructions to the LLM, giving examples, using keywords, and formatting to emphasize 
important information, providing additional background details etc. 

You will often hear the terms zero-shot, few-shot, and chain-of-thought prompting in the 
context of prompt engineering. We define these terms below: 

•	 Few-shot prompting: This is when you provide the LLM with a task description, as well 
as a few (e.g. three to five) carefully chosen examples, that will help guide the LLM’s 
response. For example, you might provide the model with the name of a few countries 
and their capital cities, then ask it to generate the capital for a new country that isn’t in 
the examples.



Foundational Large Language Models & Text Generation

45September 2024

•	 Zero-shot prompting: This is when you provide the LLM directly with a prompt with 
instructions. You usually give the LLM a task description and the LLM relies heavily on its 
existing knowledge to output the correct response. This requires no additional data or 
examples, hence the name ‘Zero-shot’ but can be less reliable than few-shot prompting.

•	 Chain-of-thought prompting: This technique aims to improve performance on complex 
reasoning tasks. Rather than simply asking the LLM a question, you provide a prompt 
that demonstrates how to solve similar problems using step-by-step reasoning. The 
LLM then generates its own chain of thought for the new problem, breaking it down into 
smaller steps and explaining its reasoning. Finally, it provides an answer based on its 
reasoning process.

Prompt engineering is an active area of research.

Sampling Techniques and Parameters

A variety of sampling techniques can be employed to determine how the model chooses 
the next token in a sequence. They are essential for controlling the quality, creativity, and 
diversity of the LLM’s output. The following is a breakdown of different sampling techniques 
and their important parameters:

•	 Greedy search50: Selects the token with the highest probability at each step. This is the 
simplest option but it can lead to repetitive and predictable outputs.

•	 Random sampling:50 Selects the next token according to the probability distribution, where 
each token is sampled proportionally to its predicted probability. This can produce more 
surprising and creative text, but also a higher chance of nonsensical output.

•	 Temperature sampling:50 Adjusts the probability distribution by a temperature parameter. 
Higher temperatures promote diversity, lower temperatures favor high-probability tokens.



Foundational Large Language Models & Text Generation

46September 2024

•	 Top-K sampling: Randomly samples from the top K most probable tokens. The value of K 
controls the degree of randomness.

•	 Top-P sampling (nucleus sampling):51 Samples from a dynamic subset of tokens whose 
cumulative probability adds up to P. This allows the model to adapt the number of potential 
candidates depending on its confidence, favoring more diversity when uncertain and 
focusing on a smaller set of highly probable words when confident.

•	 Best-of-N sampling: Generates N separate responses and selects the one deemed best 
according to a predetermined metric (e.g., a reward model or a logical consistency check). 
This is particularly useful for short snippets or situations where logic and reasoning 
are key.

By combining prompt engineering with sampling techniques and correctly calibrated 
hyperparameters, you can greatly influence the LLM’s response, making it more relevant, 
creative, and consistent for your specific needs.

Until now, we have seen the various types of LLM architectures, their underlying technology, 
as well as the approaches used to train, tune, and adapt these models for various tasks. Let’s 
now look at some key research about how the decoding process in LLMs can be sped up 
considerably to generate faster responses. 

Accelerating inference
The scaling laws for LLMs which were initially explored by the Kaplan et al.24 study continue 
to hold today. Language models have been consistently increasing in size and this has been 
a direct contributor to the vast improvement in these models’ quality and accuracy over the 
last few years. As increasing the number of parameters has improved the quality of LLMs it 



Foundational Large Language Models & Text Generation

47September 2024

has also increased the computational resources needed to run them. Numerous approaches 
have been used to try and improve the efficiency of LLMs for different tasks as developers 
are incentivized to reduce cost and latency for model users. Balancing the expense of 
serving a model in terms of time, money, energy is known as the cost-performance tradeoff 
and often needs adjusting for particular use cases.

Two of the main resources used by LLMs are memory and computation. Techniques for 
improving the efficiency or speed of inference focus primarily on these resources. The 
speed of the connection between memory and compute is also critical, but usually hardware 
constrained.  As LLMs have grown in size 1000x from millions to billions of parameters. 
Additional parameters increase both the size of memory required to hold the model and 
computations needed to produce the model results.

With LLMs being increasingly adopted for large-scale and low-latency use cases, finding 
ways to optimize their inference performance has become a priority and an active research 
topic with significant advancements. We will explore a number of methods and a few 
tradeoffs for accelerating inference.

Trade offs

Many of the high yielding inference optimisation methods mandate trading off a number of 
factors, this can be tweaked on a case-by-case basis allowing for tailored approaches to 
different inference use cases and requirements. A number of the optimization methods we 
will discuss later fall somewhere on the spectrum of these tradeoffs. 



Foundational Large Language Models & Text Generation

48September 2024

Trading off one factor against the other (e.g. latency vs quality or cost) doesn’t mean that 
we’re completely sacrificing that factor, it just means that we’re accepting what might be 
a marginal degradation in quality, latency or cost for the benefit of substantially improving 
another factor.

The Quality vs Latency/Cost Tradeoff

It is possible to improve the speed and cost of inference significantly through accepting 
what might be marginal to negligible drops in the model’s accuracy. One  example of this 
is using a smaller model to perform the task. Another example is quantisation where we 
decrease the precision of the model’s parameters thereby leading to faster and less memory 
intensive calculations.

One important distinction when approaching this trade-off is between the theoretical 
possibility of a quality loss versus the practical capability of the model to perform the desired 
task. This is use case specific and exploring it will often lead to significant speedups without 
sacrificing quality in a meaningful or noticeable way. For example, if the task we want the 
model to perform is simple, then a smaller model or a quantised one will likely be able to 
perform this task well. Reduction in parametric capacity or precision does not automatically 
mean that the model is less capable at that specific task.

The Latency vs Cost Tradeoff

Another name for this tradeoff is the latency vs throughput tradeoff. Where throughput refers 
to the system’s ability at handling multiple requests efficiently. Better throughput on the same 
hardware means that our LLM inference cost is reduced, and vice versa.



Foundational Large Language Models & Text Generation

49September 2024

Much like traditional software systems, there are often multiple opportunities to tradeoff 
latency against the cost of LLM inference. This is an important tradeoff since LLM inference 
tends to be the slowest and most expensive component in the entire stack; balancing latency 
and cost intentionally is key to making sure we tailor LLM performance to the product or use 
case it’s being used in. An example would be bulk inference use cases (e.g. offline labeling) 
where cost can be a more important factor than the latency of any particular request. On the 
other hand, an LLM chatbot product will place much higher importance on request latency.

Now that we’ve covered some of the important tradeoffs to consider when optimizing 
inference, let’s examine some of the most effective inference acceleration techniques. As 
discussed in the tradeoffs section, some optimization techniques can have an impact on the 
model’s output. Therefore we will split the methods into two types: output-approximating 
and output-preserving.

Output-approximating methods

Quantization

LLMs are fundamentally composed of multiple numerical matrices (a.k.a the model weights). 
During inference, matrix operations are then applied to these model weights to produce 
numerical outputs (a.k.a activations). Quantization is the process of decreasing the numerical 
precision in which weights and activations are stored, transferred and operated upon. The 
default representation of weights and activations is usually 32 bits floating numbers, with 
quantization we can drop the precision to 8 or even 4 bit integers. 



Foundational Large Language Models & Text Generation

50September 2024

Quantization has multiple performance benefits, it reduces the memory footprint of 
the model, allowing to fit larger models on the same hardware, it also reduces the 
communication overhead of weights and activations within one chip and across chips in 
a distributed inference setup- therefore speeding up inference as communication is a 
major contributor to latency. In addition, decreasing the precision of weights/activations 
can enable faster arithmetic operations on these models as some accelerator hardware 
(e.g. TPUs/GPUs) natively supports faster matrix multiplication operations for some lower 
precision representations.

Quantization’s impact on quality can be very mild to non-existent depending on the use 
case and model.  Further, in cases where quantisation might introduce a quality regression, 
that regression can be small compared to the performance gain, therefore allowing for an 
effective Quality vs Latency/Cost Tradeoff. For example, Benoit Jacob et al.55 reported a 2X 
speed-up for a 2% drop in accuracy for the FaceDetection task on MobileNet SSD.

Quantization can be either applied as an inference-only operation, or it can be incorporated 
into the training (referred to as Quantisation Aware Training QAT). QAT is generally 
considered to be a more resilient approach as the model is able to recover some of the 
quantisation-related quality losses during training. To make sure we get the best cost/quality 
tradeoff, we tweak the quantization strategy (e.g. select different precisions for weights 
vs activations) and the granularity in which we apply quantisation to Tensors (e.g. channel 
or group-wise58).

Distillation

Using a smaller model to perform a task is one of the most efficient inference optimization 
techniques, however, smaller models can demonstrate significant regressions on quality 
compared to their larger counterparts.



Foundational Large Language Models & Text Generation

51September 2024

Distillation is a set of training techniques that targets improving the quality of a smaller model 
(the student) using a larger model (the teacher). This method can be effective because larger 
models outperform smaller ones even if both are trained on the same data, mainly due to 
parametric capacity and training dynamics. The gap in performance continues as the training 
dataset grows as illustrated by Figure 8.

It is worth noticing that even at low volumes of training data, large models can already 
demonstrate better performance than the correspondingly trained smaller models, this fact 
leads us to the first variant of distillation which is referred to as data distillation or model 
compression.56 We use a large model which was trained on the data we have to generate 
more synthetic data to train the smaller student model, the increase in data volume will help 
move the the student further along the quality line compared to only training on the original 
data. Synthetic data needs to be approached carefully as it needs to be of high quality and 
can lead to negative effects otherwise.

Figure 8. An illustration of the performance of models of various sizes as a function of the training 
dataset’s size



Foundational Large Language Models & Text Generation

52September 2024

Other distillation techniques attempt to bring the student model closer to the teacher 
on a more granular level than just synthetic data generation. One prominent technique is 
knowledge distillation57, in this approach we attempt to align the output token distribution 
of the student model to that of the teacher’s, this can be much more sample efficient than 
data distillation. On-policy distillation59 is another technique that leverages feedback from 
the teacher model on each sequence generated by the student in a reinforcement learning 
setup. 

Output-preserving methods

These methods are guaranteed to be quality neutral, they cause no changes to the model 
output which often makes them obvious first steps to optimize inference before facing the 
more nuanced tradeoffs of the approximating methods

Flash Attention

Scaled Dot-product Attention, which is the predominant attention mechanism in the 
transformer architecture, is a quadratic operation on the input length. Optimizing the self-
attention calculation can bring significant latency and cost wins.

Flash Attention, introduced in by Tri Dao et al.62, optimizes the attention calculation by making 
the attention algorithm IO Aware, particularly trying to minimize the amount of data we move 
between the slow HBM (high bandwidth memory) to the faster memory tier (SRAM/VMEM) in 
TPUs and GPUs. When calculating attention, the order of operations is changed and multiple 
layers are fused so we can utilize the faster memory tiers as efficiently as possible.



Foundational Large Language Models & Text Generation

53September 2024

Flash Attention is an exact algorithm, it maintains the numerical output of the attention 
computation and can yield significant latency benefits due to reducing the IO overhead, Tri 
Dao et al.62 showed 2-4X latency improvements in the attention computation.

Prefix Caching

One of the most compute intensive, and thus slowest, operations in LLM inference is 
calculating the attention key and value scores (a.k.a KV) for the input we’re passing to the 
LLM, this operation is often referred to as prefill. The final output of prefill is what is termed 
KV Cache which includes the attention key and value scores for each layer of the transformer 
for the entire input. This cache is vital during the decoding phase which produces the output 
tokens, the KV cache allows us to avoid recalculating attention scores for the input on each 
autoregressive decode step.

Prefix Caching refers to the process of caching the KV Cache itself between subsequent 
inference requests in order to reduce the latency and cost of the prefill operation. The way 
the self-attention mechanism works makes reusing KV caches possible because tokens will 
only pay attention to tokens that came before them in the sequence. If there’s new input 
being appended to input that the model has seen before, then we can potentially avoid 
recalculating the prefill for the older input.



Foundational Large Language Models & Text Generation

54September 2024

Figure 9. An illustration of Prefix Caching in a chat scenario

Figure 9 illustrates how prefix caching works in a multi-turn scenario with a document upload. 
On the first user turn, the prefill operation has to process the entire document therefor taking 
500ms, the resulting KV cache is then stored so that on the second user turn, we can retrieve 
the cache directly from storage and avoid recomputing it for the long doc, therefore saving 
substantial amounts of compute and latency.



Foundational Large Language Models & Text Generation

55September 2024

Prefix caches can be stored either in memory or on disk and fetched on-demand. One 
important consideration is making sure that the input structure/schema remains prefix-
caching friendly, we should avoid changing the prefix in subsequent requests as that will 
invalidate the cache for all the tokens that follow For example, putting a fresh timestamp at 
the very beginning of each request will invalidate the cache completely as every subsequent 
request will have a new prefix.

Many LLM use cases lend themselves naturally to prefix caching. For example, LLM Chatbots 
where users will have a multi-turn conversation that can span 10s of 1000s of tokens and 
we can avoid recalculating the KV cache for the previous parts of the conversation. Large 
document/code uploads is another use case where the artifact the user uploads will remain 
unchanged from one request to the next. All that’s changing are the questions the user is 
asking, so caching the KV cache for the document (especially for larger artifacts) can result 
in significant latency and cost savings.

Prefix caching is available as a service called Context Caching on Google AI studio52 and  
Vertex AI on Google Cloud53.

Speculative Decoding

The first phase of LLM inference, known as prefill, is compute bound due large matrix 
operations on many tokens occurring in parallel. The second phase, known as decode, is 
generally memory bound as tokens are auto-regressively decoded one at a time. 



Foundational Large Language Models & Text Generation

56September 2024

It is not easy to naively use additional parallel compute capacity to speed up decode 
given the  need to wait for the current token to be produced before we can calculate what 
the next token should be (as per the self-attention mechanism), the decode process is 
inherently serial.

Speculative decoding (Leviathan at al.63) aims to overcome this limitation in decode by finding 
a way to utilize the spare compute capacity to make each decode step faster. The main idea 
is to use a much smaller secondary model (often referred to as the drafter) to run ahead of 
the main model and predict more tokens. (e.g. 4 tokens ahead). This will happen very quickly 
as the drafter is much faster and smaller than the main model. We then use the main model to 
verify the hypotheses of the drafter in parallel for each of the 4 steps (i.e. the first token, the 
first two tokens, the first 3 tokens and finally all 4 tokens), and we then select the accepted 
hypothesis with the maximum number of tokens. For example:

Figure 10. An illustration of speculative decoding over 3 tokens

Note that the 3 main model steps run in parallel. And because we are not compute bound in 
decode, we can use the spare capacity to get much better decode latencies. In the example 
above, let’s say a single main model step needs 10ms, while the drafter needs 1ms. Without 
speculative decoding, we need 3 * 10ms = 30ms to produce the response, with speculative 



Foundational Large Language Models & Text Generation

57September 2024

decoding, there’s only one main model step on the critical path due to parallelization, so we 
need 3 * 1ms + 10ms = 13ms. A significant latency improvement. This technique is completely 
quality neutral, the main model will reject any tokens that it wouldn’t have predicted itself 
in the first place, so the only thing speculative decoding does is run ahead and present 
hypotheses that the main model can accept or reject in parallel.

One important condition for speculative decoding to work effectively is that the drafter model 
has good levels of alignment with the main model, otherwise we won’t be able to accept any 
of the tokens. So investing in the training quality of the drafter model is worthwhile to get 
better latencies.

Now that we have seen some methods to make LLM generate their responses faster, let’s 
look at some examples of how these models can be applied to various tasks to get an idea 
how to use them.

Batching and Parallelization

Most of the optimization techniques we’ve discussed so far are specific to Machine Learning 
and Transformer architecture in particular. However, much like any software system, there 
are opportunities to improve throughput and latency through a combination of 1) batching 
less compute-intensive operations (i.e. we can run multiple requests on the same hardware 
simultaneously to better utilize the spare compute) and 2) parallelizing the more compute-
intensive parts of the computations (i.e. we can divide the computation and split it amongst 
more hardware instances to get more compute capacity and therefore better latencies

Batching in LLMs is most useful on the decode side - as we explained in the Speculative 
Decoding section, decode is not compute-bound and therefore there’s an opportunity 
to batch more requests. We need to be careful that we batch computations in a way that 



Foundational Large Language Models & Text Generation

58September 2024

enables utilization of the spare capacity which is possible to do on accelerators (e.g. TPUs 
and GPUs). We also need to make sure we remain within the memory limits, as decode is a 
memory intensive operations, batching more requests will put more pressure on the free 
memory available. Batching has become an important component in most high-throughput 
LLM inference setups.

Parallelization is also a widely used technique given the variety of opportunities in 
transformers for horizontal scaling across more hardware instances. There are multiple 
parallelism techniques across the model input (Sequence parallelism) the model layers 
(Pipeline parallelism), and within a single layer (Tensor parallelism). One of the most important 
considerations for parallelism is the cost of communication and synchronization between 
the different shards that we distribute to other machines. Communication is a significant 
overhead and can erode the benefits of adding more computational capacity if we’re not 
careful about which parallelization strategy to use. On the other hand, selecting the right 
strategy to balance the need for additional compute and the communication cost can yield 
significant latency wins.

Now that we have seen some methods to make LLM generate their responses faster, let’s 
look at some examples of how these models can be applied to various tasks to get an idea 
how to use them.

Applications
Large language models are revolutionizing the way we interact with and process information. 
With their unprecedented ability to understand context and generate content, they’re 
transforming numerous applications in the worlds of text, code, images, audio and video. 
Here we collected a few examples of application areas, but the reader should keep in mind 
that this is not a comprehensive list and that many new ideas are emerging continuously 



Foundational Large Language Models & Text Generation

59September 2024

about how to best utilize the capabilities of these new tools. For more information about 
optimally building and deploying functioning applications based on the following mentioned 
use cases, refer to the subsequent whitepapers. 

It is also very simple to generate text-based responses for your use case using either 
the Google Cloud Vertex AI SDK or the Developer focused AI studio. Snippet 3 shows 
code examples from these SDKs to generate responses to text prompts using the Gemini 
model. Note that the multimodal aspects of Gemini are covered in their respective 
dedicated whitepapers.



Foundational Large Language Models & Text Generation

60September 2024

Python

# Before you start run this command:
# pip install --upgrade --user --quiet google-cloud-aiplatform
# after running pip install make sure you restart your kernel

import vertexai
from vertexai.language_models import TextGenerationModel
from vertexai.preview.generative_models import GenerationConfig,GenerativeModel

# Set values as per your requirements
PROJECT_ID = ‘<project_id>’ # set to your project_id
vertexai.init(project=PROJECT_ID, location=’us-central1’)

PROMPT= ‘What is a LLM?’ # set your prompt here
model = GenerativeModel(‘gemini-1.5-pro-002’)

# call the Gemini API
response = model.generate_content(
   PROMPT)

print(response.text)

# google AI Studio SDK
import google.generativeai as genai
import os

# update with your API key
genai.configure(api_key=os.environ[“GOOGLE_API_KEY”])

# choose the model
model = genai.GenerativeModel(‘gemini-pro’)

response = model.generate_content(‘What is a LLM?’) # set your prompt here

print(response.text)

Snippet 3. Using Vertex AI and Google AI studio SDKs for unimodal text gene 



Foundational Large Language Models & Text Generation

61September 2024

Code and mathematics

Generative models can comprehend and generate code and algorithms to supercharge 
developers by assisting them across many application areas. Some of the popular use cases 
for code include:

•	 Code generation: LLMs can be prompted in natural language to generate code in a 
specific programming language to perform certain operations. The output can be used as 
a draft.

•	 Code completion: LLMS can proactively suggest useful code as the user types it. This 
can save developers time and improve code quality.

•	 Code refactoring and debugging: LLMs can help reduce technical debt by refactoring 
and debugging code to improve quality, efficiency and correctness.

•	 Code translation: LLMs can significantly help developer time and effort by helping to 
convert code from one programming language to another. For example, an LLM might 
convert Python code to Java.

•	 Test case generation: LLMs can be prompted to generate unit tests for a provided 
codebase which saves considerable time and reduces errors.

•	 Code documentation and understanding: LLMs can be used in a conversational manner 
to engage in a natural language chat to help you understand a codebase. They can also 
generate appropriate comments, understand copyright status, and create release notes.

Recently, a number of exciting advancements have been made in the space of competitive 
coding and mathematics. AlphaCode 2,64 combines Gemini’s reasoning capabilities with 
search and the use of tools to solve competitive coding problems. It receives as input a 
description of a problem to solve, and outputs a code solution that solves the problem. It 



Foundational Large Language Models & Text Generation

62September 2024

now ranks among the top 15% competitive coders on the popular Codeforces competitive 
coding platform. FunSearch65 uses an evolutionary procedure which is based on pairing 
a pre-trained LLM with a systematic evaluator. It solved the cap set problem66, an open 
problem in mathematics, and also discovered more efficient bin-packing algorithms which 
are used in many applications such as making data centers more efficient. Another recent 
approach called AlphaGeometry tackles the problem of finding proofs for complex geometric 
theorems. It comprises a neuro-symbolic system made up of a neural language model and 
a symbolic deduction engine. AlphaGeometry managed to solve 25 out of 30 Olympiad 
geometry problems, where the average human gold medalist scores on average 25.9. 67

Machine translation

LLMs are capable of generating fluid, high-quality and contextually accurate translations. 
This is possible due to the LLM’s deep understanding of linguistic nuances, idioms, and 
context. The following are some possible real world use cases:

•	 Instant messaging apps: In messaging platforms, LLMs can provide on-the-fly 
translations that feel natural. Unlike previous algorithms that might translate word-
for-word, LLMs understand slang, colloquialisms, and regional differences, enhancing 
cross-language communication.

•	 E-commerce: On global platforms like AliExpress, product descriptions are automatically 
translated. LLMs help with ensuring cultural nuances and idiomatic expressions in product 
details are appropriately translated, leading to fewer misunderstandings.

•	 Travel apps: In apps like Google Translate, travelers get real-time spoken translations. 
With LLMs, the translated conversations are smoother, making interactions in foreign 
countries more effortless.



Foundational Large Language Models & Text Generation

63September 2024

Text summarization

Text summarization is a core capability of many of the LLMs mentioned in this whitepaper. 
There are a number of natural potential use cases which include:

•	 News aggregators: LLMs could craft summaries that capture not only the main 
events but also the sentiment and tone of the article, providing readers with a more 
holistic understanding.

•	 Research databases: LLMs could help researchers generate abstracts that encapsulate 
the core findings and implications of scientific papers.

•	 Chat management: In platforms like Google Chat, LLM-based systems could generate 
thread summaries that capture the urgency and tone, aiding users in prioritizing 
their responses.

Question-answering

The older generation of QA systems often worked by keyword matching, frequently missing 
out on the contextual depth of user queries. LLMs, however, dive deep into context. They can 
infer user intent, traverse vast information banks, and provide answers that are contextually 
rich and precise. Some of the examples where this could be used include:

•	 Virtual assistants: LLMs can offer detailed explanations of a weather forecast 
considering the user’s location, time of year, and recent weather trends.

•	 Customer support: In business platforms, LLM-based bots could provide answers that 
take into account the user’s purchase history, past queries, and potential issues, offering 
personalized assistance.



Foundational Large Language Models & Text Generation

64September 2024

•	 Academic platforms: On academic platforms like Wolfram Alpha, LLMs could cater to 
user queries by understanding the depth and context of academic questions, offering 
answers that suit everyone from a high school student to a postgraduate researcher.

The quality of the generated answers, as well as the corresponding citations and sources 
can be significantly improved by using advanced search systems (such as those based on 
Retrieval Augmented Generation (RAG) architectures) to expand the prompt with relevant 
information, as well as post-hoc grounding after the response has been generated. Clear 
instructions, roles of what should and should not be used to answer the question, and 
advanced prompt engineering approaches (such as chain of thought and search/RAG 
architectures), combined with a lower temperature value amongst other things can also 
help greatly.

Chatbots

Earlier chatbots followed scripted pathways, leading to ‘mechanical’ conversations. LLMs 
transform this space by offering dynamic, human-like interactions. They can analyze 
sentiment, context, and even humor, making digital conversations feel more authentic. Some 
examples of where this can be used include:

•	 Customer service: A chatbot on retail platforms like Zara could not only answer product-
related queries but also offer fashion advice based on current trends.

•	 Entertainment: On Media LLM-driven chatbots could engage with users dynamically, 
reacting to live events in the stream and moderating chats with contextual understanding.



Foundational Large Language Models & Text Generation

65September 2024

Content generation

Text generation isn’t new, but what LLMs bring to the table is the unprecedented ability 
to generate human-like text that’s contextually relevant and rich in detail. Earlier models 
would often lose context or coherence over longer passages. LLMs, with their vast 
knowledge and nuanced understanding, can craft text spanning various styles, tones, and 
complexities, mixing factuality with creativity (depending on the context) effectively bridging 
the gap between machine-generated and human-written content. The following are some 
real-world examples:

•	 Content creation: Platforms could utilize LLMs to help marketers develop advertisements. 
Instead of generic content, the LLMs could generate creative, targeted, and 
audience-specific messages.

•	 Scriptwriting: LLMs could potentially assist with producing scripts for movies or TV 
shows. Writers could input themes or plot points, and the model can suggest dialogues or 
scene descriptions, enhancing the creative process.

Text generation is a wide task encompassing a variety of use cases that might range from 
those where correctness of the generated output is more or less important than its creativity/
diversity of the language. The sampling methods and parameters like temperature should be 
tuned accordingly. For more information, see the prompt engineering and architecting for 
LLM applications whitepapers.

Natural language inference

Natural language inference (NLI) is the task of determining whether a given textual 
hypothesis can be logically inferred from a textual premise.



Foundational Large Language Models & Text Generation

66September 2024

Traditional models struggled with nuanced relationships or those that require a deeper 
understanding of context. LLMs, with their intricate grasp of semantics and context, excel 
at tasks like these, bringing accuracy levels close to human performance. The following are 
some real-world examples:

•	 Sentiment analysis: Businesses could utilize LLMs to infer customer sentiment from 
product reviews. Instead of just basic positive or negative tags, they could extract 
nuanced emotions like ‘satisfaction,’ ‘disappointment,’ or ‘elation’.

•	 Legal document review: Law firms could employ LLMs to infer implications 
and intentions in contracts, ensuring there are no contradictions or potentially 
problematic clauses.

•	 Medical diagnoses: By analyzing patient descriptions and histories, LLMs could assist 
doctors in inferring potential diagnoses or health risks, ensuring early intervention.

The whitepapers on domain specific LLMs, prompt engineering, and architecting for LLM 
applications give further insight into these use cases.

Text classification

Text classification involves categorizing text into predefined groups. While traditional 
algorithms were efficient, they often struggled with ambiguous or overlapping categories. 
LLMs, given their deep understanding of context, can classify text with higher precision, even 
when faced with subtle distinctions. Some examples of this include:

•	 Spam detection: Email services could utilize LLMs to classify emails as spam or 
legitimate. Instead of just keyword-based detection, the models understand the context 
and intent, potentially reducing false positives.



Foundational Large Language Models & Text Generation

67September 2024

•	 News categorization: News platforms could employ LLMs to categorize articles into 
topics like ‘technology,’ ‘politics,’ or ‘sports,’ even when articles blur the boundaries 
between categories.

•	 Customer feedback sorting: Businesses could analyze customer feedback through 
LLMs to categorize them into areas like ‘product design,’ ‘customer service,’ or ‘pricing,’ 
ensuring targeted responses.

•	 Evaluating LLMs as autorater: LLMs could be used to rate, compare and rank the 
generated outputs of other LLMs as well.

Text analysis

LLMs excel at deep text analysis – extracting patterns, understanding themes, and gleaning 
insights from vast textual datasets. Where traditional tools would scratch the surface, LLMs 
delve deep, offering rich and actionable insights. Some potential real-world examples are:

•	 Market research: Companies could leverage LLMs to analyze consumer conversations on 
social media, extracting trends, preferences, and emerging needs.

•	 Literary analysis: Academics could employ LLMs to understand themes, motifs, and 
character developments in literary works, offering fresh perspectives on classic and 
contemporary literature.



Foundational Large Language Models & Text Generation

68September 2024

Multimodal applications

Multimodal LLMs, capable of processing and generating text, images, audio, and video, have 
opened up a new frontier in AI, offering a range of exciting and innovative applications across 
various sectors. The following are some examples: 

Creative content generation:

•	 Storytelling: An AI system could watch an image or video and spin a captivating narrative, 
integrating details from the visual with its knowledge base.

•	 Advertising and marketing: Generating targeted and emotionally resonant advertisements 
based on product photos or videos.

Education and accessibility:

•	 Personalized learning: Tailoring educational materials to individual learning styles by 
combining text with interactive visual and audio elements.

•	 Assistive technology: Multimodal LLMs could power tools that describe images, videos, 
and audio for visually or hearing-impaired individuals.

Business and industry:

•	 Document understanding and summarization: Automatically extracting key information 
from complex documents, combining text and visuals like invoices and contracts.

•	 Customer service: Multimodal chatbots can understand and respond to customer queries 
combining text and images, offering a richer and more personalized experience. Science 
and research:



Foundational Large Language Models & Text Generation

69September 2024

•	 Medical diagnosis: Analyzing medical scans and reports together, identifying potential 
issues and providing insights for doctors.

•	 Bioinformatics and drug discovery: Integrating knowledge from diverse data sources like 
medical images, protein structures, and research papers to accelerate research.

These examples are just the tip of the iceberg. As research progresses, the applications 
of multimodal LLMs are only expected to grow, transforming our daily lives in diverse and 
profound ways. Multimodal LLMs also benefit greatly from the existing methodologies of 
Unimodal LLMs ( i.e., text based LLMs).

LLMs, thanks to their ability to understand and process language, are reshaping how we 
interact with, generate, and analyze text across diverse sectors. As they continue to evolve, 
their applications will only grow, boosting the ability for machines and humans to have rich 
natural language interactions.

Summary
In this whitepaper we have discussed the basics of transformers, upon which all modern-day 
LLMs are based. We detailed the evolution of the various LLM model architectures and their 
components. We’ve also seen the various methodologies you can use to train and fine-tune 
models efficiently and effectively. We briefly discussed prompt engineering and sampling 
techniques that greatly influence the output of an LLM, and also touched on possible 
applications of this technology. There are a number of key takeaways to keep in mind:



Foundational Large Language Models & Text Generation

70September 2024

•	 The transformer architecture is the basis for all modern-day LLMs. Across the various 
architectures mentioned in this whitepaper we see that it’s important not only to add more 
parameters to the model, but the composition of the dataset is equally important. 

•	 The order and strategies used for fine-tuning is important and may include multiple steps 
such as Instruction Tuning, Safety Tuning, etc. Supervised Fine Tuning (SFT) is important 
in capturing the essence of a task. RLHF, and potentially RLAIF, can be used to shift the 
distribution from the pretraining distribution to a more desired one through the power of 
the reward function, that can reward desirable behaviors and penalize undesirable ones.

•	 Making inference from neural models efficient is an important problem and an active 
field of research. Many methods exist to reduce serving costs and latency with minimal 
impact to model performance, and some exact acceleration methods guarantee identical 
model outputs.

•	 Large language models can be used for a variety of tasks including summarization, 
translation, question answering, chat, code generation, and many more. You can 
create your own tasks using the Vertex and Makersuite text generation services which 
leverage Google’s latest language models. After the model has been trained and tuned, 
it is important to experiment with engineering prompts. You should use the technique 
most appropriate for the task-at-hand because LLMs can be sensitive to prompts k. 
Furthermore, it is also possible to enhance task specific performance or creativity and 
diversity by tweaking the parameters corresponding to sampling techniques such as 
Top-K, Top-P, and Max decoding steps to find the optimum mix of correctness, diversity, 
and creativity required for the task at hand.



Foundational Large Language Models & Text Generation

71September 2024

Endnotes

1.	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I., 2017, Attention is 
all you need. Advances in Neural Information Processing Systems, 30.

2.	 Wikipedia, 2024, Word n-gram language model. Available at:  
https://en.wikipedia.org/wiki/Word_n-gram_language_model.

3.	 Sutskever, I., Vinyals, O., & Le, Q. V., 2014, Sequence to sequence learning with neural networks. Advances in 
Neural Information Processing Systems, 27.

4.	 Gu, A., Goel, K., & Ré, C., 2021, Efficiently modeling long sequences with structured state spaces.  
arXiv preprint arXiv:2111.00396.

5.	 Jalammar, J. (n.d.). The illustrated transformer. Available at:  
https://jalammar.github.io/illustrated-transformer/.

6.	 Ba, J. L., Kiros, J. R., & Hinton, G. E., 2016, Layer normalization.  
arXiv preprint arXiv:1607.06450.

7.	 He, K., Zhang, X., Ren, S., & Sun, J., 2016, Deep residual learning for image recognition. Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition.

8.	 HuggingFace., 2024, Byte Pair Encoding. Available at:  
https://huggingface.co/learn/nlp-course/chapter6/5?fw=pt.

9.	 Kudo, T., & Richardson, J., 2018, Sentencepiece: A simple and language independent subword tokenizer and 
detokenizer for neural text processing. arXiv preprint arXiv:1808.06226.

10.	HuggingFace, 2024, Unigram tokenization. Available at:  
https://huggingface.co/learn/nlp-course/chapter6/7?fw=pt.

11.	 Goodfellow et. al., 2016, Deep Learning. MIT Press. Available at: http://www.deeplearningbook.org.

12.	 Radford, Alec et al., 2019, Language models are unsupervised multitask learners.

13.	 Brown, Tom, et al., 2020, Language models are few-shot learners. Advances in Neural Information 
Processing Systems, 33, 1877-1901.

14.	 Devlin, Jacob, et al., 2018, BERT: Pre-training of deep bidirectional transformers for language understanding. 
arXiv preprint arXiv:1810.04805.

https://en.wikipedia.org/wiki/Word_n-gram_language_model
https://jalammar.github.io/illustrated-transformer/
https://huggingface.co/learn/nlp-course/chapter6/5?fw=pt
https://huggingface.co/learn/nlp-course/chapter6/7?fw=pt
http://www.deeplearningbook.org


Foundational Large Language Models & Text Generation

72September 2024

15.	 Radford, A., & Narasimhan, K., 2018, Improving language understanding by generative pre-training.

16.	 Dai, A., & Le, Q., 2015, Semi-supervised sequence learning. Advances in Neural Information 
Processing Systems.

17.	 Ouyang, Long, et al., 2022, Training language models to follow instructions with human feedback. Advances 
in Neural Information Processing Systems, 35, 27730-27744.-27744.

18.	 OpenAI., 2023, GPT-3.5. Available at: https://platform.openai.com/docs/models/gpt-3-5.

19.	 OpenAI., 2023, GPT-4 Technical Report. Available at: https://arxiv.org/abs/2303.08774.

20.	Thoppilan, Romal, et al., 2022, Lamda: Language models for dialog applications. 
arXiv preprint arXiv:2201.08239.

21.	 Llama 3.2: Revolutionizing edge AI and vision with open, customizable models. Available 
at: https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/.

22.	Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., ... & Irving, G., 2021, Scaling language 
models: Methods, analysis & insights from training Gopher. Available at: https://arxiv.org/pdf/2112.11446.pdf.

23.	Du, N., He, H., Dai, Z., Mccarthy, J., Patwary, M. A., & Zhou, L., 2022, GLAM: Efficient scaling of language 
models with mixture-of-experts. In International Conference on Machine Learning (pp. 2790-2800). PMLR.

24.	Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D., 2020, Scaling laws 
for neural language models. arXiv preprint arXiv:2001.08361.

25.	Hoffmann, Jordan, et al., 2022, Training compute-optimal large language models. arXiv 
preprint arXiv:2203.15556.

26.	Shoeybi, Mohammad, et al., 2019, Megatron-LM: Training multi-billion parameter language models using 
model parallelism. arXiv preprint arXiv:1909.08053.

27.	 Muennighoff, N. et al., 2023, Scaling data-constrained language models. arXiv preprint arXiv:2305.16264.

28.	Chowdhery, Aakanksha, et al., 2023, Palm: Scaling language modeling with pathways. Journal of Machine 
Learning Research, 24(240), 1-113.

29.	Wang, Alex, et al.,2019, SuperGLUE: A stickier benchmark for general-purpose language understanding 
systems. Advances in Neural Information Processing Systems, 32.

30.	Anil, Rohan, et al., 2023, Palm 2 technical report. arXiv preprint arXiv:2305.10403.

https://platform.openai.com/docs/models/gpt-3-5
https://arxiv.org/abs/2303.08774
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/pdf/2112.11446.pdf


Foundational Large Language Models & Text Generation

73September 2024

31.	 DeepMind, 2023, Gemini: A family of highly capable multimodal models. Available at:  
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf.

32.	DeepMind, 2024, Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. 
Available at: https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf.

33.	Google Developers, 2024, Introducing PaLi-Gemma, Gemma 2, and an upgraded responsible AI toolkit. 
Available at: https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024/.

34.	Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix, T., ... & Jegou, H., 2023, Llama 2: Open 
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.

35.	Jiang, A. Q., 2024, Mixtral of experts. arXiv preprint arXiv:2401.04088.

36.	Qwen, 2024, Introducing Qwen1.5. Available at: https://qwenlm.github.io/blog/qwen1.5/.

37.	 Young, A., 2024, Yi: Open foundation models by 01.AI. arXiv preprint arXiv:2403.04652.

38.	Grok-1, 2024, Available at: https://github.com/xai-org/grok-1.

39.	Duan, Haodong, et al., 2023, BotChat: Evaluating LLMs’ capabilities of having multi-turn dialogues. 
arXiv preprint arXiv:2310.13650.

40.	Google Cloud, 2024, Tune text models with reinforcement learning from human feedback. Available at:  
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-text-models-rlhf.

41.	 Bai, Yuntao, et al., 2022, Constitutional AI: Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073.

42.	Wikipedia, 2024, Likert scale. Available at: https://en.wikipedia.org/wiki/Likert_scale.

43.	Sutton, R. S., & Barto, A. G., 2018, Reinforcement learning: An introduction. MIT Press.

44.	Bai, Yuntao, et al, 2022, Constitutional AI: Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073.

45.	Rafailov, Rafael, et al., 2023, Direct preference optimization: Your language model is secretly a reward 
model. arXiv preprint arXiv:2305.18290.

46.	Houlsby, Neil, et al., 2019, Parameter-efficient transfer learning for NLP. In International Conference on 
Machine Learning (pp. 2790-2799). PMLR.

47.	 Hu, Edward J., et al., 2021, LoRA: Low-rank adaptation of large language models. 
arXiv preprint arXiv:2106.09685.

48.	Dettmers, Tim, et al., 2023, QLoRA: Efficient finetuning of quantized LLMs. arXiv preprint arXiv:2305.14314.

https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024/
https://qwenlm.github.io/blog/qwen1.5/
https://github.com/xai-org/grok-1
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-text-models-rlhf
https://en.wikipedia.org/wiki/Likert_scale


Foundational Large Language Models & Text Generation

74September 2024

49.	Lester, B., Al-Rfou, R., & Constant, N., 2021, The power of scale for parameter-efficient prompt tuning. arXiv 
preprint arXiv:2104.08691.

50.	HuggingFace., 2020, How to generate text? Available at: https://huggingface.co/blog/how-to-generate.

51.	 Google AI Studio Context caching. Available 
at: https://ai.google.dev/gemini-api/docs/caching?lang=python.

52.	Vertex AI Context caching overview. Available 
at: https://cloud.google.com/vertex-ai/generative-ai/docs/context-cache/context-cache-overview.

53.	Gu, A., Goel, K., & Ré, C., 2021, Efficiently modeling long sequences with structured state spaces.  
Available at: https://arxiv.org/abs/2111.00396.

54.	Hubara et al., 2016, Quantized neural networks: Training neural networks with low precision weights and 
activations. Available at: https://arxiv.org/abs/1609.07061.

55.	Benoit Jacob et al., 2017, Quantization and training of neural networks for efficient integer-arithmetic-only 
inference. Available at: https://arxiv.org/abs/1712.05877.

56.	Bucila, C., Caruana, R., & Niculescu-Mizil, A., 2006, Model compression. Knowledge Discovery and Data 
Mining. Available at: https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf.

57.	 Hinton, G., Vinyals, O., & Dean, J., 2015, Distilling the knowledge in a neural network.  
Available at: https://arxiv.org/abs/1503.02531.

58.	Zhang, L., Fei, W., Wu w., He Y., Lou Z., Zhou H., 2023, Dual Grained Quantisation: Efficient Finegrained 
Quantisation for LLM. Available at: https://arxiv.org/abs/2310.04836.

59.	Agarwal, R., Vieillard, N., Zhou, Y., Stanczyk, P., Ramos, S., Geist, M., Bachem, O., 2024, On-
Policy Distillation of Language Models: Learning from Self-Generated Mistakes. Available 
at: https://arxiv.org/abs/2306.13649.

60.	Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J., 2017, Outrageously large neural 
networks: The sparsely-gated mixture-of-experts layer. Available at: https://arxiv.org/abs/1701.06538.

61.	 Schuster, T., Fried, D., & Jurafsky, D., 2022, Confident adaptive language modeling. Available at:  
https://arxiv.org/abs/2207.07061.

62.	Tri Dao et al. “FlashAttention. Available at:  
https://arxiv.org/abs/2205.14135.

https://huggingface.co/blog/how-to-generate
https://ai.google.dev/gemini-api/docs/caching?lang=python
https://cloud.google.com/vertex-ai/generative-ai/docs/context-cache/context-cache-overview
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1712.05877
https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2310.04836
https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2205.14135


Foundational Large Language Models & Text Generation

75September 2024

63.	Leviathan, Y., Ram, O., Desbordes, T., & Haussmann, E., 2022, Fast inference from transformers via 
speculative decoding. Available at: https://arxiv.org/abs/2211.17192.

64.	Li, Y., Humphreys, P., Sun, T., Carr, A., Cass, S., Hawkins, P., ... & Bortolussi, L., 2022, Competition-level code 
generation with AlphaCode. Science, 378(1092-1097). DOI: 10.1126/science.abq1158.

65.	Romera-Paredes, B., Barekatain, M., Novikov, A., Novikov, A., Rashed, S., & Yang, J., 2023, Mathematical 
discoveries from program search with large language models. Nature. DOI: 10.1038/s41586-023-06924-6.

66.	Wikipedia., 2024, Cap set. Available at: https://en.wikipedia.org/wiki/Cap_set.

67.	 Trinh, T. H., Wu, Y., & Le, Q. V. et al., 2024, Solving olympiad geometry without human demonstrations. 
Nature, 625, 476–482. DOI: 10.1038/s41586-023-06747-5.

https://arxiv.org/abs/2211.17192
https://en.wikipedia.org/wiki/Cap_set

	Introduction
	Why language models are important
	Large language models
	Transformer
	Input preparation and embedding
	Multi-head attention
	Understanding self-attention
	Multi-head attention: power in diversity

	Layer normalization and residual connections
	Feedforward layer 
	Encoder and decoder
	Training the transformer
	Data preparation
	Training and loss function



	The evolution of transformers
	GPT-1
	BERT
	GPT-2
	GPT-3/3.5/4
	LaMDA
	Gopher
	GLaM
	Chinchilla
	PaLM
	PaLM 2

	Gemini
	Other open models
	Comparison

	Fine-tuning large language models
	Supervised fine-tuning 
	Reinforcement learning from human feedback
	Parameter Efficient Fine-Tuning


	Using large language models
	Prompt engineering 
	Sampling Techniques and Parameters

	Accelerating inference
	Trade offs
	The Quality vs Latency/Cost Tradeoff
	The Latency vs Cost Tradeoff

	Output-approximating methods
	Quantization
	Distillation
	Output-preserving methods
	Flash Attention

	Prefix Caching
	Speculative Decoding
	Batching and Parallelization


	Applications
	Code and mathematics
	Machine translation
	Text summarization
	Question-answering
	Chatbots
	Content generation
	Natural language inference
	Text classification
	Text analysis
	Multimodal applications

	Summary
	Endnotes

